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The Hubbard model on the kagome lattice has highly degenerate ground states (the flat lowest band)
in the corresponding single-electron problem and exhibits the so-called flat-band ferromagnetism in the
many-electron ground states as was found by Mielke [J. Phys. A 24, L73 (1991)]. Here we study the
model obtained by adding extra hopping terms to the above model. The lowest single-electron band
becomes dispersive, and there is no band gap between the lowest band and the other band. We prove that,
at half filling of the lowest band, the ground states of this perturbed model remain saturated
ferromagnetic if the lowest band is nearly flat.
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added terms change the flat lowest band into a dispersive The total spin operators Stot � �Stot ; Stot ; Stot 
 are defined
Numerous studies have been made on the Hubbard
model, a tight-binding model of electrons with on-site
interactions, to understand mechanisms for itinerant-
electron ferromagnetism [1–4]. Recently, a significant
breakthrough was brought by Mielke [5] and by Tasaki
[6] who proved that certain classes of Hubbard models
have ferromagnetic ground states. These models in com-
mon have multi single-electron bands containing disper-
sionless bands and are called flat-band Hubbard models.

Although these flat-band Hubbard models shed light on
the role of the Coulomb interaction in ferromagnetism,
the models with completely flat bands are still singular.
Since the bands supporting ferromagnetism are flat, the
ferromagnetic states are already among the ground states
of these models in the noninteracting case. This implies
that the flat-band models do not describe true competition
between the kinetic energy and the Coulomb interaction.
The next important step is thus to clarify whether the flat-
band ferromagnetism is stable against perturbations
which turn the flat bands into dispersive bands. As for
Tasaki’s version of flat-band Hubbard models, local
stability of the ferromagnetic ground state in perturbed
nearly flat-band models was proved [7]. Tasaki also gave a
concrete example of nearly flat-band Hubbard models in
which he could prove that the ground states are ferromag-
netic [8,9]. See [10,11] for related results.

As for Mielke’s version of flat-band Hubbard models,
on the other hand, there have been no rigorous results
about stability (or instability) of ferromagnetism in per-
turbed nearly flat-band models. Here we note the follow-
ing essential difference between Mielke’s and Tasaki’s
models: there are no band gaps in Mielke’s models while
there are finite band gaps in Tasaki’s models. We stress
that the problem of stability of ferromagnetism is much
more subtle and difficult in Mielke’s models, where one
might encounter various low energy excitation modes
which reflect the gapless nature of the band structures.

In this Letter, we treat the model obtained by adding
hopping terms to the Hubbard model on the kagome
lattice, a typical example of Mielke’s models [12]. The
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band of a cosine type, but the band structure remains
gapless. We prove that our model has saturated ferromag-
netic ground states at half filling of the lowest band,
provided that the lowest band is nearly flat.

Although the added terms considered here are special,
this is the first time, to our knowledge, that a nonsingular
Hubbard model with gapless dispersive bands and a
simple lattice structure (where all the lattice sites are
identical) is proved to exhibit ferromagnetism for finite
on-site interactions. We hope that our result will open a
route to a better understanding of itinerant-electron
ferromagnetism. Very recently, a possibility of (nearly)
flat-band ferromagnetism in quantum dot arrays was
proposed [13]. We also hope that our result will stimulate
research in this field.

Definition.—We first define the reference lattice L as

L �

�
n1�1 � n2�2

�������
ni 2 Z and 0 �

ni < L for i � 1; 2

�
; (1)

where �1 � �1; 0�, �2 � �12 ;
���
3

p
=2�, and L is a positive

integer. For each � 2 L we define [14]

C1
� �

�
x � n1

�1

2
� n2

�2

2
jn1; n2 2 Z; jx 	 �j �

1

2

�
;

(2)

C2
� �

�
x � n1

�1

2
� n2

�2

2
jn1; n2 2 Z; jx 	 �j �

���
3

p
=2
�
;

(3)

and C� � C1
� [ C2

� [Fig. 1(a)]. Then, the kagome lattice �
can be constructed as � � [�2LC�, where a site x 2 �
is generally counted 4 times in different C� [Fig. 1(b)].
Our lattice has open boundaries. Periodic lattices can be
also treated with extra technical complication. We denote
by �0 the state with no electrons and denote by cx;� and
cyx;� the annihilation and the creation operators, respec-
tively, of an electron with spin � at site x in �. These
operators satisfy the usual fermion anticommutation re-
lations. The number operator is defined as nx;� � cyx;�cx;�.

�1� �2� �3�
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FIG. 1. (a) Local lattice C� � C1
� [ C2

�. The open and
the gray circles represent sites in C1

� and C2
�, respectively.

(b) Lattice �. (c) The operators b��;x�;� and a�;� are supported
on the triangle and the hexagon, respectively. The number in a
circle is the coefficient of cx;� for the site.

P H Y S I C A L R E V I E W L E T T E R S week ending
14 FEBRUARY 2003VOLUME 90, NUMBER 6
as S�i�
tot �

1
2

P
x2�

P
�;��";# c

y
x;�p�i�

��cx;� for i � 1; 2; 3, where
p�i� � �p�i�
�;��";# are the Pauli matrices. We denote by
Stot�Stot � 1� the eigenvalue of �Stot�

2.
Let us define our Hubbard Hamiltonian. First, for each

x 2 C2
� we define b��;x�;� � cx;� �

P
y2C1

�;jy	xj�1
2
cy;�. We

also define a�;� �
P

y2C1
�
���; y
cy;� for � 2 L, where

we pick ���; y
 to be alternately �1 and 	1 when going
around a hexagon. [See Fig. 1(c).] To each C� we associate
the local Hamiltonian

H � � 	s
X

��";#

ay
�;�a�;� �

t
3

X
��";#

X
x2C2

�

by
��;x�;�b��;x�;�

�
U
4

X
x2C�

nx;"nx;#; (4)

where s, t, and U are positive parameters. Then, the
Hubbard Hamiltonian on the whole lattice � is defined
as H �

P
�2L H �.

Remarks.—It is possible to rewrite H into the standard
form as H �

P
�

P
x;y2� txyc

y
x;�cy;� �

P
x2� Uxnx;"nx;#,

where the model parameters are given by Ux � U, and
txy � 2�t 	 s� if x � y, txy � t � s if jx 	 yj � 1=2, txy �
	s if jx 	 yj �

���
3

p
=2, txy � s if jx 	 yj � 1, and x; y 2

C1
� with some �, and txy � 0 otherwise, except for the

sites close to the boundary. The single-electron dispersion
relations (calculated in the model with periodic boundary
conditions) are given by E1�k� � 	2s�3	 e�k�
, E2�k� �
t�3	

��������������������
3� 2e�k�

p

, and E3�k� � t�3�

��������������������
3� 2e�k�

p

 with

e�k� � cosk1 � cosk2 � cos�k1 	 k2�, where k � k1��
1 �

k2��
2 is the wave vector expanded in terms of reciprocal-

lattice vectors ��
1 � �1;	1=

���
3

p
� and ��

2 � �0; 2=
���
3

p
�. Note

that E1�0� � E2�0� � 0, which means that there is no gap
between the lowest and the second lowest bands.

One readily finds that fa�;�; by
��;x�;�g � 0 for any

�; � 2 L and x 2 C2
�. This implies that fay

�;��0g�2L

spans the space corresponding to the lowest band.
If we set s � 0, our model has highly degenerate

single-electron ground states and becomes essentially
the flat-band model of Mielke’s (although there is a differ-
ence in boundary conditions). In this case, the model
exhibits flat-band ferromagnetism for all positive values
of U. In the model with s > 0, the situation is quite
different because double occupancies of lower energy
states, which destroy the ferromagnetic order, may reduce
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the total energy of the system. It is indeed easy to prove
that the ground states of our model have Stot � 0 (or 1

2 ) for
U � 0 and cannot exhibit saturated ferromagnetism for
sufficiently small U. (See, for example, Sec. 3.3 of [4].)
The following theorem establishes that the ferromagnetic
ground states are stable for sufficiently large t and U when
the electron number is jLj.

Main theorem: Consider the Hubbard model defined as
above with the electron number jLj. Then, there exist
critical values �t=s�c and �U=s�c, independent of the
lattice size, such that, if both t=s > �t=s�c and U=s >
�U=s�c are satisfied, the ground states of the model have
Stot � jLj=2. Furthermore, the ground state is unique up
to the degeneracy due to the rotational symmetry.

In Tasaki’s models, the stability of ferromagnetism
may be, at least at a heuristic level, understood as a
consequence of the band gap separating the lowest nearly
flat band from other bands. The band gap enforces the
electrons to occupy the lowest band while the interaction
rules out double occupancies of sites. Then the situation is
almost as in the flat-band models, and the systems exhibit
ferromagnetism. To Mielke’s models, which have no band
gaps, the above argument does not apply, and the origin of
the stability of ferromagnetism seems more subtle.
Nevertheless, our proof is based on essentially the same
philosophy as that of Tasaki’s proof in [8]. Namely, we
first establish ferromagnetism in a local model described
by H � and then show that this local ferromagnetism can
be ‘‘connected,’’ which results in macroscopic ferromag-
netism in the whole system. The results of the analysis of
H � are summarized in the following lemma.

Lemma: If t=s and U=s are sufficiently large, the
minimum eigenvalue of H � is 	6s and any eigenstate
� belonging to this eigenvalue is written as

� � ay
�;"�" � ay

�;#�#; (5)

with suitable states �" and �#. Furthermore, it satisfies

cx;#cx;"� � 0 (6)

for all x 2 C�.
Proof of Lemma: Since all the local Hamiltonians are

the translated copies of H 0, it suffices to prove the
lemma for � � 0. From now on, for convenience, we
identify C1

0 and C2
0 with f0; 2; . . . ; 10g and f1; 3; . . . ; 11g,

respectively [we first label �12 ; 0� as 0, then label the rest of
the sites as 1; . . . ; 11 in the clockwise order].

We start by solving a single-electron problem for H 0.
Let I � f0;� �

3 ;� 2�
3 ; �g. The eigenvalues are given by

"1�p� �
�
0 if p 2 Inf�g;
	6s if p � �;

(7)

and "2�p� �
t
3 �3� 2 cosp� with p 2 I. The eigenstate

corresponding to "1�p� is expressed as dy
p;��0 with

dp;� � 1=
����������������������������
6�3� 2 cosp�

p X5
l�0

eipl�c2l;� 	 c2l	1;� 	 c2l�1;��

(8)
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(where c	1;� is regarded as c11;�). Note that the set
fdy

p;��0gp2I is orthonormal since fdp;�; dy
p0;�g � !p;p0 .

We consider the many-electron problem for H 0, first
in the limit t; U ! 1. Let � be a state on C0 which has a
finite energy in this limit. Since all "2�p� are infinite in
the limit t ! 1, � must be expanded as

� �
X

I";I#�I

g�I"; I#���I"; I#� (9)

with complex coefficients g�I"; I#�, where

��I"; I#� �
Y
p2I"

dy
p;"

Y
p02I#

dy
p0;#�0: (10)

Here, and throughout the present Letter, the products are
ordered in such a way that dy

p;" (respectively, dy
p;#) is

always on the left of dy
p0;" (respectively, dy

p0;#) if p < p0.
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Since the on-site interaction nx;"nx;# � cyx;"c
y
x;#cx;#cx;" is

positive semidefinite, the state � in the form of (9)
must further satisfyX

I";I#�I

g�I"; I#�cx;#cx;"��I"; I#� � 0 (11)

for any x 2 C0 in order to have finite energy in the limit
U ! 1. From (7), (9), and (10), one finds that the expec-
tation value of H 0 for the state � is E� �
��;H 0��=��;�� � 	6s � 6sFk�k	2, with F �P

I";I#�Inf�g�jg�I"; I#�j
2 	 jg�I�

" ; I
�
# �j

2
 and k�k2 �
�
P

I";I#�I jg�I"; I#�j
2
 [15], where coefficients g should sat-

isfy the condition (11). Here, and in what follows, we
abbreviate I� [ fpg as Ip

� for p 2 I. In the following, we
show F � 0. This implies E� � 	6s since s > 0.

To prove F � 0, we first derive conditions on g im-
posed by (11). If we denote �’�p�

x �� � fcx;�; dy
p;�g, the left-

hand side of (11) becomes
X
I";I#�I;jI"j�1;jI#j�1

g�I"; I#�
X
p2I"

X
p02I#

�	1�jI"j	1Sp
I"
Sp0

I#
�’�p�

x ���’�p0�
x ����I"nfpg; I#nfp

0g�

�
X

p;p02I

�’�p�
x ���’�p0�

x ��
X

I"�Infpg

X
I#�Infp0g

�	1�jI"jSp
I"
Sp0

I#
g�Ip

" ; I
p0

# ���I"; I#� �
X

I";I#�I

X
p;p02I

�’�p�
x ���’�p0�

x ��~gg�Ip
" ; I

p0

# ���I"; I#�; (12)
where Sp
I�

, which corresponds to a sign factor coming
from exchange of the fermion operators, equals 1 ifP

p02I�;p0<p 1 is even and 	1 otherwise. In the final ex-
pression of (12), we introduced subsidiary coefficients
~gg defined as ~gg�Ip

" ; I
p0

# � � 0 if p 2 I" or p0 2 I#
and ~gg�Ip

" ; I
p0

# � � �	1�jI"jSp
I"
Sp0

I#
g�Ip

" ; I
p0

# � otherwise.
Therefore, cx;#cx;"� � 0 holds if and only ifP

p;p02I�’
�p�
x ���’�p0�

x ��~gg�Ip
" ; I

p0

# � � 0 for any I"; I# � I.
Taking the sum of this equation over x 2 C1

0, we find
that

P
p2I

1
�3�2 cosp� ~gg�I

p
" ; I

	p
# � � 0 and similarly taking

the sum over x 2 C2
0, we find thatP

p2I
�1�cosp�
�3�2 cosp� ~gg�I

p
" ; I

	p
# � � 0 (where we identified 	�

with �). By eliminating ~gg�I0" ; I
0
# � from these two equa-

tions, we obtain

~gg�I�
" ; I

�
# � � 	 1

16~gg�I
�=3
" ; I	�=3

# � 	 1
16~gg�I

	�=3
" ; I�=3

# �

	 3
8~gg�I

2�=3
" ; I	2�=3

# � 	 3
8~gg�I

	2�=3
" ; I2�=3

# � : (13)

Our analysis below relies heavily on this condition.
For a subset I# of I, we define �II # � f	pjp 2 I#g and

denote by N�I"; I#� the number of elements in I" \ �II # \
�Inf0; �g�. Condition (13) relates ~gg�I"; I#� with I"; I# such
that N�I"; I#� � r and ~gg�I0"; I
0
#� with I0"; I

0
# such that

N�I0"; I
0
#� � r � 1. This motivates us to decompose F as

F � F0 �
P

4
r�0 Fr, where

Fr �
X

I" ;I#�Inf�g;

N�I" ;I# ��r�1

jg�I"; I#�j2 	
X

I" ;I#�Inf�g;

N�I" ;I# ��r

jg�I�
" ; I

�
# �j

2; (14)

F0 �
X

I";I#�Inf�g;N�I";I#��0

jg�I"; I#�j2: (15)

Since the term F0 is apparently non-negative, F � 0 is
implied by Fr � 0 for r � 0; . . . ; 4.

We shall prove that Fr � 0 by using (13). For a pair of
I�
" and I�

# such that N�I�
" ; I

�
# � � r, the number of nonzero

~gg on the right-hand side of (13) is, by the definition, at
most 4	 r, and thus for such a pair we have [16]

j~gg�I�
" ; I

�
# �j

2 �
9

64
�4	 r�

X
p2Inf0;�g

j~gg�Ip
" ; I

	p
# �j2: (16)

Then, we find that

X

I" ;I#�Inf�g;

N�I" ;I# ��r

jg�I�
" ; I

�
# �j

2 �
X

I" ;I#�Inf�g;

N�I" ;I#��r

j~gg�I�
" ; I

�
# �j

2 �
9

64
�4	 r�

X
I" ;I#�Inf�g;

N�I" ;I# ��r

X
p2Inf0;�g

j~gg�Ip
" ; I

	p
# �j2

�
9

64
�4	 r��r � 1�

X
I" ;I#�Inf�g;

N�I" ;I# ��r�1

jg�I"; I#�j2 �
27

32

X
I";I#�Inf�g;N�I";I#��r�1

jg�I"; I#�j2: (17)

To get the second line, we have used the fact that, for I" and I# such that N�I"; I#� � r � 1, there are r � 1 elements p in
Inf0; �g for which we can find suitable subsets I0" and I0# such that fpg [ I0" � I" and f	pg [ I0# � I#. To obtain the final
inequality, we have used �4	 r��r � 1� � 6 for 0 � r � 4. By using (17) we obtain
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Fr �
5

32

X
I";I#�Inf�g;N�I";I#��r�1

jg�I"; I#�j2 � 0: (18)

We therefore conclude that F � 0. The above analysis
also shows that the equality F � 0 holds only when F0

and Fr are vanishing, i.e., g�I"; I#� � 0 for any pair of I"
and I# such that � 2 I" \ I# or � =2 I" [ I#.

In other words, we have shown that E� � 	6s for any
� and that any � attaining the minimum expectation
value 	6s is written as

� �
X

I";I#�I;�2I"[I#;�=2I"\I#

g�I"; I#���I"; I#� (19)

and further satisfies the finite energy condition (11). One
finds that such minimizing � indeed exists by testing
dy

�;"�0 or
Q

p2I dy
p;"�0. By construction such � is an

eigenstate of H 0 as well as 	s
P

� ay
0;�a0;�. Since it is

known to be the lowest energy state of H 0 in the limit
t; U ! 1, the continuity of energy implies that such � is
the lowest energy state of H 0 for sufficiently large t=s
and U=s. It is also easy to check that such � has the
properties stated in the lemma. [Note that d�;� �
���0; 0
=

���
6

p
�a0;�.] This completes the proof of the

lemma. �
Proof of Theorem: We assume that the values of t=s and

U=s are large enough for the statement in the lemma to
hold. We note that how large t=s and U=s should be is
independent of the size of �, because the lemma is
concerned with the local Hamiltonian.

From the lemma we find that the lowest energy EG of
H is bounded below by 	6sjLj, while, by taking �f �Q

�2L ay
�;"�0 as a variational state, we find that 	6sjLj is

an upper bound on EG [17]. Therefore, EG � 	6sjLj, and
�f and its SU(2) rotations are among the ground states.
Apparently these states have Stot � jLj=2.

The remaining task is to prove the uniqueness. Let �G

be an arbitrary ground state. The lemma implies that EG

is attained if and only if H ��G � 	6s�G for all � 2
L. Thus �G must satisfy the conditions stated in the
lemma.

The condition (5) implies that �G is expressed as [18]

�G �
X
f�g

’�f�g�
Y
�2L

ay
�;���0; (20)

where f�g is a shorthand for a spin configuration
f��g�2L, the summation is over �� �"; # for all � 2 L,
and ’�f�g� is a complex coefficient.

Let us impose the condition (6) on �G in the form of
(20). Let � and ( be nearest neighbor points in L, i.e.,
j� 	 (j � 1, and let m��; (� 2 � be the site located at
the midpoint between � and (. It is easy to see that
fcm��;(�;�; ay

�;�g is nonvanishing if � � � or (, and is
vanishing otherwise. Then, it follows from the condition
cm��;(�;#cm��;(�;"�G � 0 that ’�f�g� � ’�f�g� for any pair
067204-4
of spin configurations f�g and f�g satisfying that �� �
�(, �( � ��, and �� � �� for � � �;(. Examining
cm��;(�;#cm��;(�;"�G � 0 for all the pairs of nearest neigh-
bor points in L, we find that ’�f�g� � ’�f�g� wheneverP

� �� �
P

� ��. Therefore �G is written as �G �PjLj
M�0 ’M�S	

tot�
M�f ; , where ’M are new coefficients and

the spin lowering operator S	
tot is defined by S	

tot �P
x2� cyx;#cx;". This completes the proof. �
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