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We demonstrate the existence of nonlocal topological (string) order in half-integer-spin antiferro-
magnetic Heisenberg chains on macroscopic scale on the basis of analytical scaling analysis and density
matrix renormalization group calculations. Strong numerical evidence leads to a conjecture that chains
with S � �2m� 1�=2 and m (m � integers) belong to the same topological class defined by the
topological angle �=� � 1=m that plays a role similar to the fictitious gauge field in the fractional
quantum Hall effect.
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proposed that higher topological symmetries would ac- chain as the fictitious gauge field in FQHE, we conjecture
One-dimensional quantum spin chains have been a
subject of great interest since the early days of quantum
mechanics. Important earlier work includes the Bethe-
ansatz solutions [1,2] and the sine-Gordon [3] and boson-
ization [4] theories on the nearest-neighbor isotropic
antiferromagnetic Heisenberg chain (AFHC) with spin
S � 1=2. It was long assumed that the properties of the
S � 1=2 AFHC are generic for all spins. However, this
notion was challenged in 1983 when Haldane pointed out
[5] a fundamental difference between spin chains with
integer and half-integer spins. By mapping the Heisen-
berg spin chains onto the O�3� nonlinear � model [6]
Haldane conjectured that the low-energy excitation spec-
trum displays a finite energy gap for integer-spin chains.
The key to this conjecture is the topological aspects of
AFHC that allow integer-spin chains to be treated in the
large-S limit in the nonlinear �-model formalism and
have been shown to have finite energy gap and correla-
tion length. Meanwhile the half-integer spin chains
cannot be treated in the same formalism and are thought
to be generically critical on the basis of the Bethe-ansatz
results for S � 1=2 and the generalized Lieb-Schultz-
Mattis theorem [7,8]. Because of a lack of exact analytic
solutions, accurate verification of Haldane’s conjecture
has come from numerical calculations. These include
AFHCs with S � 3=2 [9], S � 1 [10], and S � 2
[11–13]. Numerical efforts for higher spins are hampered
by exceedingly small gaps and large correlation lengths
which in the limit S ! 1 obey ��S� / S2e��S and
	�S� / S�1e�S [5,6].

A microscopic description of the Haldane state is pro-
vided by the valence bond solid (VBS) picture [14] which
reproduces essentially all qualitative features of AFHC. A
nonlocal string order parameter has been introduced [15]
to characterize fundamental topological order in both
VBS and AFHC [10,15–17]. Topological order in integer-
spin chains has been extensively studied in recent years.
For S � 1, hidden Z2 � Z2 symmetry [18] and end chain
states [10,19] have been identified. For S > 1, it was
0031-9007=03=90(6)=067202(4)$20.00 
count for the end chain states [20]. Numerical studies on
high spin VBS models [21] and AFHCs [11,22] verified
the existence of the string order and end chain states. To
detect hidden topological order in AFHC with S > 1, the
original (’’ordinary’’) string order parameter [15] has
been extended [20,21] to include a topological angle �
that serves a role similar to that of the fictitious gauge
field in the adiabatic heuristic argument of the fractional
quantum Hall effect (FQHE) [16,23–26]. The extended
string order parameter OS defined at the peak position
� � �=S measures nonlocal topological order in quan-
tum spin chains with general (integer) spins [16,20,21].

On the other hand, based on the observation of critical
(gapless) behavior and a lack of end chain states in the
S � 1=2 AFHC, it is widely believed that the nonlocal
topological order does not exist in half-integer spin
AFHCs. However, this view has never been substanti-
ated by any serious analytic or numerical calculations.
Recently a field theoretical analysis has shown [27] that
end chain states appear as the lowest energy excitations in
half-integer spin open chains. A numerical study [28] for
S � 3=2 open chains has shown that quantum fluctuations
do not smear out the end chain states. These results point
to the existence of topological order in the ground state of
gapless half-integer spin chains.

In this Letter we present a systematic study of the
extended string order parameter in antiferromagnetic
Heisenberg chains using analytical scaling analysis based
on the bosonization theory and the VBS construction of
the spin chain states, and the density matrix renormal-
ization group (DMRG) calculations.We first show that the
string order parameters in half-integer spin chains scale
to zero very slowly and only beyond a certain length scale
that grows quickly with increasing spin. Numerical
DMRG calculations further demonstrate the behavior of
the string order parameters in AFHCs and show that
chains with S � �2m� 1�=2 and m (m � integers) share
the same peak position at �=� � 1=m. Since this peak
position reflects the topological structure of the spin
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FIG. 1 (color online). Calculated OS��; L� and the scaling
behavior of OS at selected � for S � 1=2 and S � 1. Open
circles in (d) indicate the extrapolated results.
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that this ‘‘staircase’’ structure reflects a common topo-
logical feature shared by the pairs (with the same m) of
integer and half-integer spin chains that are otherwise
distinguished by the Haldane conjecture in their low-
energy excitation behavior.

We first examine the scaling behavior of the string
order parameter with the chain length. We have carried
out bosonization theory calculations following the same
procedure as in Ref. [29] but extending the results for
spin-1=2 AFHC with general topological angle �. The
calculations yield the scaling behavior O���	L��2=4�2

(L
is the chain length in terms of the number of the lattice
spacing), which reproduces the L�1=4 scaling behavior in
Ref. [29] as a special case for ���. Our DMRG calcu-
lations for the spin-1=2 chain (see below) confirm this
scaling behavior. Extension to higher half-integer AFHC
is achieved through the construction of the VBS and un-
contracted end chain states, similar to that in the integer-
spin chain case [21]. It can be shown [30] that the string
order parameter of a half-integer spin (S>1=2) is com-
posed of two parts, one from an effective integer-spin
part which remains finite and the other from an effective
spin-1/2 chain which has the same scaling behavior ob-
tained above and determines the overall scaling behavior
of the chain. Since the topological angle ��2�=�2S
1�
for half-integer spin chains (see below), the scaling func-
tion behaves like L��2S
1��2

. This yields scaling behavior
L�1=4;L�1=16;L�1=36; . . . for S�1=2;3=2;5=2; . . . . Further-
more, our DMRG calculations indicate that there exists a
length scale beyond which the predicted power-law decay
to zero sets in. This length scale is around L�150 for
S�1=2. Because of loss of numerical accuracy for longer
chains, we are unable to determine the length scale for
chains with larger spins, but it is expected to be much
longer, possibly reaching macroscopic scale for larger
spins. This long length scale allows the extraction of
a pseudo-long-range order parameter from the slow-
varying O��� for half-integer-spin AFHCs.

We now turn to numerical evaluation of the string order
parameter to further investigate its properties. We use the
infinite chain DMRG algorithm [31] and keep up to
1800 optimized states in the DMRG calculations for
smaller spins (S � 2). The largest truncation error is
about 10�6 for the largest spin (9=2) studied in this
work. For a spin-S chain of length L, we calculate the
extended string order parameter [20]

OS��; L� �
1

S2

*
Sz1 exp

 
i�
XL=2
l�2

Szl

!
SzL=2
1

+
: (1)

We consider even length periodic chains with the largest
separation between two spins L=2� 1. Results for L �
4n and L � 4n
 2 have odd and even site parity [13,32],
respectively, yielding OS��; L� � OS�2�� �; L� for in-
teger-spin chains and OS��; L� � �OS�2�� �; L� for
L � 4n
 2 and 4n for half-integer spin chains.
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For S � 2, DMRG calculations were performed for
L � 4 to L � 200, followed by a scaling analysis for
extrapolation (except for S � 1=2 where the L��2=4�2

scaling is applied directly). Numerical accuracy is good
since the chain length is greater than the spin-spin corre-
lation length 	 (	 e�S), which are 2, 6.03, 19, and 49 for
S � 1=2, 1, 3=2, and 2, respectively [22]. For the half-
integer-spin chains, the parameter 	 is a characteristic
length beyond which the continuum field theory provides
an effective description for the AFHCs. For higher spins,
shorter chains (up to 60) were used due to the loss of
accuracy for larger L, and a simple average of the results
of the longest chains with even and odd site parity is used.

For extrapolation we use the scaling function [33]

OS��; L� � OS��; L� 
 cOS�0; L�; (2)

where c is a constant depending on � only. It separates the
slow-varying part OS��; L� from the fast-varying high-
energy contribution OS�0; L�. We solve the equation by
evaluating the string order parameter at two different
chain lengths (L� 2 and L
 2):

OS��; L� �

�������OS��; L� 2� OS�0; L� 2�
OS��; L
 2� OS�0; L
 2�

�������������� 1 OS�0; L� 2�
1 OS�0; L
 2�

�������
: (3)

The extrapolated value OS��� is obtained by fitting
OS��; L� with a fourth-order polynomial in 1=Ln. The
validity of this scaling analysis is supported by our nu-
merical fitting shown below.

Figure 1 shows the calculated extended string order
parameter and the scaling behavior at selected � for S �
1=2 and S � 1. We first examine results at several known
limits and compare with previous work. Both O1=2 and O1

scale to zero at �� 2� as expected since they reduce
to the usual Néel order parameter. Also, O1=2��;L�
4n� � 0 for all n since there are an odd number of
067202-2
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half-integer spins in the summation in Eq. (1). In addi-
tion, our calculated OS ��0:37434 for S� 1 at ���
(i.e., the ordinary string order parameter) is in excellent
agreement with the value obtained by White and Huse
[10]. Support to the use of scaling function Eq. (2) comes
from the observation [see Fig. 1(c)] that when L=2>	, or
1=L< 0:08 for S� 1, OS��;L� starts to converge to the
extrapolated value. This behavior is also seen for S� 3=2
[Fig. 2(a)] and S� 2 [Fig. 2(c)].

The inset of Fig. 1(a) shows the scaling behavior of the
extended string order parameter for S � 1=2. The agree-
ment between the DMRG data and the result of the
bosonization theory calculation is excellent. The calcu-
lated OS for finite chain lengths show very slow conver-
gence [see Fig. 1(b); for clarity, only the results up to
L � 100 are plotted], consistent with the scaling analysis.
These results suggest that the S � 1=2 AFHC has ‘‘mar-
ginal’’ topological order in the sense that it decays ex-
tremely slowly and remains finite for L  	.

One striking feature in Figs. 1(b) and 1(d) is that the
peak positions for S � 1=2 and S � 1 are both located
at �. This pattern of OS with S � �2m� 1�=2 and S � m
(m � integers) sharing the same peak position (at �=� �
1=m) extends to higher spin cases (see Table I). The
significance of the peak in OS for integer-spin chains
has been discussed in both the VBS [21] and AFHC
[34,35] pictures. The topological angle � corresponding
to the peak in OS plays a role similar to the fictitious
gauge field in FQHE and OS�� � �=S� reflects the fun-
damental features of the ground-state wave function of
the quantum spin system. Our results show that half-
integer spin AFHCs share the same topological feature.

Calculated extended string order parameters for S �
3=2 and S � 2 are shown in Fig. 2. For S � 3=2, the peak
position is located near � � �=2, the same as in the
S � 2 case, rather than at � � �=S � 2�=3. It is clear
that OS is finite in both cases. OS � 0 at � � 0 (2�),
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where it reduces to the usual Néel order parameter. For
S � 3=2, OS��;L � 4n� � 0 for all n as in the S � 1=2
case. For S � 2, OS � 0 at � � �. This is understood in
the VBS picture as the result of the Z2 symmetry which
leads to vanishing string order in integer-spin chains with
even S [21]. It is noticed that in the S � 3=2 case the peak
values for chains with even and odd site parities scale to
slightly different values while they share the same peak
position. This behavior is observed in all half-integer spin
AFHCs studied in this work. A possible source for this
difference is the site parity effect that manifests itself in
the gapless half-integer AFHCs where quantum fluctua-
tions are stronger than in integer AFHCs. The most
pronounced effect is seen near � � �. However, for
half-integer spin chains with S � 3=2 the peak positions
occur increasingly away from this point, yielding insig-
nificant differences in the values of OS.

We have calculated the extended string order parameter
OS (the peak value) and the corresponding topological
angle (peak position) for AFHCs with spins up to S �
9=2. The results for all spins are summarized in Table I.
Results for integer-spin VBS models [21] are also listed
for comparison. It is seen that OS is always smaller in
AFHCs than in the corresponding VBS models. This is
the consequence of the stronger fluctuation in AFHCs
[35]. It is also noticed that within the same pair of integer-
spin and half-integer-spin chains (i.e., S � 3=2 and 2, 5=2
and 3, etc.), OS is always smaller in the half-integer-spin
chains, reflecting the stronger quantum fluctuation in
chains with gapless excitation spectra.

Furthermore, the calculated peak positions converge to
the same value for the even and odd parity chains in all
the cases and the values for integer-spin AFHCs are in ex-
cellent agreement with those obtained in a matrix product
formalism for the integer-spin VBS models [21]. These
numerical results strongly suggest that AFHCs with S �
�2m� 1�=2 and S � m (m � integers) share the same
topological angle �=� � 1=m, leading to the conjecture
TABLE I. Calculated peak values and positions of the ex-
tended string order parameter for AFHCs with spin up to 9=2.
Results for integer-spin VBS models (Ref. [21]) are listed for
comparison. Notice that use of different phase conventions
causes the difference of a negative sign in the peak value.

Peak Value OS Peak Position (�=�)
S AFHC VBS AFHC VBS

1=2 0 1.0
1 �0:374 34�1� 0.444 1.0 1.0
3=2 �0:175�5� 0.51(1)
2 �0:1955�5� 0.250 0.46(1) 0.5
5=2 �0:17�1� 0.375(5)
3 �0:18�3� 0.218 0.325(5) 0.35
7=2 �0:16�3� 0.27(2)
4 �0:20�3� 0.205 0.26(1) 0.27
9=2 �0:17�3� 0.23(2)
5 0.195 0.22
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that there is a common underlying topological feature
shared by integer and half-integer spin chains. This raises
the possibility to supplement the Haldane conjecture and
classify quantum spin chain ground states by certain
hidden order parameters as proposed for the fractional
quantum Hall effect. It is interesting to note that a pre-
vious work on frustrated spin chains [36] showed that as
the frustration becomes strong free end spins disappear
suddenly for both integer and half-integer spin chains,
suggesting a common feature shared by the two systems.

The calculated extended string order parameters for
integer-spin AFHCs with spins up to S � 4 are shown in
Fig. 3. The alternation between vanishing and finite values
at � � � for even and odd integer-spin chains previously
observed in VBS models [21] is clearly seen here in
AFHCs. These results reinforce the notion that VBS and
AFHC chains share the same qualitative topological
features.

In summary, we have shown that nonlocal topological
string order exists on macroscopic scale in half-integer-
spin AFHCs with the only exception of S � 1=2.
Numerical evidence suggests a common topological fea-
ture shared by pairs of integer and half-integer AFHCs
that may serve to further classify quantum spin chains.
Although the extended string order in half-integer-spin
chains is only pseudo long ranged, there are physical
consequences such as end chain states that survive even
in the limit of infinite chain length. It also indicates the
existence (and possible breaking) of certain hidden sym-
metries in AFHCs as observed in VBS models. Details on
the nature of the topological order in AFHCs with general
spin and the underlying symmetry remain important
open questions for future studies.

Finally, it is important to note [11,37] that string order
exists not just in Haldane phases but also in XY and
large-D phases where the VBS construction and the suc-
cessive phase transitions predicted [20] in theVBS picture
become questionable. The link between the string order,
theVBS construction, and the gapped Haldane phases for
integer-spin chains remains to be explored further.
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