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Length Scale Coupling for Nonlinear Dynamical Problems in Magnetism
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The dynamics of real magnets is often governed by several interacting processes taking place
simultaneously at different length scales. For dynamical simulations, the relevant length scales should
be coupled, and the energy transfer accurately described. We show that in this case the micromagnetic
theory is not always reliable. We present a coarse-graining approach applicable to nonlinear problems,
which provides a unified description of all relevant length scales, allowing a smooth, seamless coupling.
The simulations performed on model systems show that the coarse-graining approach achieves nearly
the precision of all-atom simulations.
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dynamic multiscale problems, can give incorrect results,
which differ drastically from the exact solutions obtained

where H 0 describes the isotropic exchange interaction,
and J�� is the exchange interaction between the atomic
The dynamics of magnetization in real magnets is
often governed by defects: impurities, vacancies, grain
boundaries, etc., Because of very localized (several lat-
tice constants) but significant changes in the magnetic
interactions, the torques acting on individual atomic mag-
netic moments near the defect are strongly nonuniform.
Atomic-scale inhomogeneities can result in large-scale
(hundreds or thousands of angstroms) changes of the
magnetization distribution (e.g., nucleation of a domain).
At larger length scales (microns), magnons propagate into
the bulk of the sample carrying away significant energy.
Such multiscale phenomena are encountered in the depin-
ning of domain walls [1–3], the influence of surfaces and
interfaces on the spins in the bulk [4–6], etc., and deter-
mine basic magnetic properties such as the coercive field
and the dynamics of magnetization reversal.

Accurate simulations of such phenomena might be
possible if the whole system could be treated at the atomic
scale [7], representing every atomic spin as a classical
vector (for the phenomena discussed here, quantum spin
effects can be neglected). But for a micron-size sample,
the number of spins is much too large for modern super-
computers. Atomistic modeling can be used near the
defects, while far from the defects one should use a
micromagnetic (MM) theory [8]. Micromagnetics is a
continuum approximation which treats a discrete lattice
of spins as a continuous medium. It is valid for large-scale
processes occurring in the bulk, but becomes inapplicable
at small scales. When MM is used for numerical model-
ing, e.g., in the finite-element formulation [9], the con-
tinuum equations of micromagnetics are discretized
again. But the size of the MM computational cell should
be much larger than the lattice constant, and cannot be
gradually reduced down to atomic scale, which is needed
for matching atomistic simulations used near the defect.
We show that neglect of this issue, and straightforward
use of micromagnetics for description of small scales in
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by all-atom simulations. Thus, MM theory per se cannot
be used for a seamless coupling of length scales.

Here, we present an approach which treats all length
scales in the same manner, enabling a seamless transition
from the MM scale down to the atomistic scale. The
approach is based on statistical coarse graining. A key
point is the direct account of the global rotational sym-
metry of exchange interactions; this allows treatment of
essentially nonlinear dynamical problems. The proposed
approach yields reliable results which are in excellent
agreement with exact atomic simulations.

The problem of length scale coupling has been dis-
cussed in the context of lattice dynamics modeling
[10–12]. Analogous schemes can be constructed for
linear magnetic problems [13], but most of the interesting
problems in magnetism are essentially nonlinear due to
the constraint S2x � S2y � S2z � S2 (Sx;y;z are the compo-
nents of the spin and S is its length; everywhere below we
assume S � 1), and the linear scheme [11,13] gives quali-
tatively incorrect results. In contrast, the approach pro-
posed here is explicitly developed for nonlinear problems.

Our approach is based on statistical coarse graining
(CG), which has been used for a long time to define
collective variables (‘‘gross variables’’) for description
of a large number of microscopic entities. For simplicity,
here we consider only the case of low temperature (much
less than the other relevant energy scales), thus dealing
with purely dynamical problems, where dissipation and
thermal noise are negligible. We assume that the system
under consideration is a ferromagnet made of identical
classical spins S� (jS�j � 1), located at the�th site of the
crystalline lattice (greek indices enumerate the atomic
lattice sites). The system is described by a rather general
spin Hamiltonian function

H � H 0 �V ; H 0 �
X
�;�

J��S�S�; (1)
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spins at the sites � and �. The term V � H 0 represents
all the other interactions (anisotropy, magnetostatics,
etc.). We separate the exchange term because, at the
atomic scale, the exchange interactions are much stronger
than all others, even for moderately anisotropic ferromag-
nets such as CoPt or FePt. In the bulk, the isotropic
exchange term H 0 (in contrast with the term V ) keeps
the atomic spins locally aligned, independent of their
direction. Departure from alignment is noticeable only
for spins separated by many lattice constants, so that the
direction of many neighboring spins can be described by
only a few collective variables. This is also a starting
point of MM theory; both MM and CG approaches treat
the small anisotropic term V perturbatively.

In the MM approach, the local magnetization is a gross
variable, defined as a local average of individual atomic
spins [8]. Similarly, in the CG method, we define the
gross variables as local averages over the computational
cell, with some technical differences. We use a Hamil-
tonian formulation of the magnetization dynamics, de-
scribing a spin by the variables 
1� � 2 sin���=2� cos��
and 
2� � 2 sin���=2� sin��, where �� and �� are the
azimuthal and the polar angles of the spin vector, respec-
tively. One can check that 
1� and 
2� are canonically
conjugate variables, _

1� � @H =@
2�, and _

2� �
�@H =@
1�; these are classical analogs of the
Holstein-Primakoff canonical variables [14]. We assume
that, for the simulations of the large-scale regions located
far from defects, the finite-element method (FEM) is
used. We define the local gross variables, which describe
a given region of the system (at a length scale determined
by the size of the computational cell), by averaging the
atomic degrees of freedom: 
1j �

P
� f�;j 
1�, and


2j �
P
� f�;j 
2�, where the index j corresponds to the

FEM nodes. The weight function f�;j localized near the
node j must satisfy the normalization conditionP
� f�;j � 1. The choice of this function was discussed

in detail in Ref. [13]; we found that the piecewise-linear
choice is sufficient: f�;j � f0j���j�1j=j�j ��j�1j for
� 2 	�j�1; �j
 (and symmetrically for � 2 	�j;�j�1
),
where �j is the atomic position of the jth computational
node and f0 is the normalization. This function is maxi-
mum at the jth node, decreases linearly to zero at the
neighboring nodes, and is zero everywhere else.

The collective variables are similar in the CG and MM
methods, but the equations of motion differ in handling
the exchange interactions. The MM theory assumes
that the direction of the atomic spins changes linearly
between two computational nodes, and, in terms of mag-
netization M�r�, the exchange energy density is propor-
tional to �rM�2 for the simple cubic lattice (the result is
similar for other lattices [8]). This is valid in the contin-
uum limit (for computational cells containing a large
number of atoms), but is incorrect for the cells containing
only few atomic spins. The CG approach uses the frame-
work of nonequilibrium statistical theory [15] to account
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for the local dynamics of the short-length scale excita-
tions in the magnet, which MM theory treats inaccurately.
Nonequilibrium statistical theory allows rigorous treat-
ment of excitations, independently of whether they are
generated dynamically (in an isolated system, as we
consider here), or thermodynamically (by interactions
with a heat bath) as long as they are small (so the ap-
proach is limited to temperatures much smaller than the
Curie temperature). Here, we omit the finite-temperature
effects for simplicity.

The main assumption of nonequilibrium statistical
theory [15] is that the atomic degrees of freedom are in
local equilibrium, i.e., the atomic spins satisfy the equi-
librium Gibbs distribution, with the condition that the
collective variables have their values 
1j and 
2j. The
distribution function for the atomic variables is

� �Q�1 exp���H 0�;

H 0 �H 0 �
X
�;j

Fjf�;j
1� �
X
�;j

Gjf�;j
2�;
(2)

where Q is the statistical integral. The torques Fj and Gj
enforce the condition of local equilibrium, i.e., they
are chosen to satisfy the conditions

P
� f�;j h
1�i �

@F =@Fj � 
1j, and
P
� f�;j h
2�i � @F =@Gj � 
2j,

where the angular brackets mean the statistical averaging
with the distribution function (2), and F � ��1=�� lnQ
is the analog of the Gibbs free energy for exchange
interactions. Thus, Fj and Gj are the exchange torques
acting on the collective variables of the jth node; the
torques originating from other (weaker) interactions in
V will be added perturbatively to the equations of
motion [15].

Because of strong exchange interactions, the atomic
spins near the node j are nearly parallel to the direction
defined by 
1j and 
2j, and H 0 in Eq. (2) can be locally
linearized: H 0 � �1=2�

P
�;� J���
1�
1� � 
2�
2��.

Then,Q in Eq. (2) is an easily solvable Gaussian integral.
But H 0 is rotationally invariant; its value does not
change if all atomic spins rotate by the same angle. The
matrix J�� has an eigenmode describing this rotation,
and the corresponding eigenvalue of J is zero (a
Goldstone or zero-frequency mode). The zero-frequency
mode leads to a divergence in the integral Q. Similarly
‘‘dangerous’’ are the slow modes which describe the spin
rotations spanning large length scales: Their frequencies
are small (secular terms).

These collective spin rotations are described by gross
variables, and are of most interest. Their characteristic
length scale, the DW width �, is much larger than the
lattice constant a. The exchange torques affecting the
gross variables are small; i.e., gross variables are much
slower than the atomic-scale motions [15]. Using the
modified adiabatic theory [16], we separate the slow non-
linear motion of gross variables from the fast linear
motion of the atomic-scale variables. Thus, we exclude
067201-2
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FIG. 1. Time dependence of the total magnetization Stot�t� of
the chain calculated by three methods: large white circles,
atomic simulations; small black circles, MM simulations;
crosses, CG scheme. Initial conditions correspond to the chain
uniformly magnetized along the y axis. Since the CG results
almost coincide with the atomistic ones, the crosses appear
mostly in the centers of the white circles.
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the secular terms fromQ, and also describe the nonlinear
motion of the gross variables. At every node j, we define a
local coordinate frame, rotated with respect to the ‘‘labo-
ratory’’ frame by the angles �j and �j such that 
1j �
2 sin��j=2� cos�j, and 
2j � 2 sin��j=2� sin�j. To ex-
clude the secular terms, we require that the local ampli-
tude of the zero-frequency mode is zero at the jth node:P
� f�;j h


�j�
1�i �

P
� f�;j h


�j�
2�i � 0, where 
�j�

1�, 
�j�
2� are

calculated in the local coordinate frame associated with
the jth node. These conditions are local, since f�;j is
local, and the statistical integral Q is calculated in the
local coordinate frame. By averaging the canonical equa-
tions of motion for 
�j�

1�, 
�j�
2�, and using the definition of

the gross variables (
�j�
pn �

P
� f�;n


�j�
p�, p � 1; 2), the

equations of motion for the variables �j and �j can be
obtained in closed form:

_��j � �
X
�

f�;jh@V =@
2;�i �
X
kn

MjkDkn

�j�
2n;

sin�j _��j �
X
�

f�;jh@V =@
1;�i �
X
kn

MjkDkn

�j�
1n;

(3)

where Mjk �
P
� f�;jf�;k, and Djk � D

0
jk�

djSk=S0 � dkSj=S0 � d0SjSk=S
2
0, where D0

jk �

�
P
�� f�;jJ

�1
��f�;k��1, Sk is the eigenvector of D0

jk corre-
sponding to the zero eigenvalue, and dj �

P
l D

0
jl, d0 �P

l dl, S0 �
P
l Sl. To invert J��, which has a zero-

frequency eigenmode �0
�, we invert the nonsingular ma-

trix K�� � J�� � ��0
��0

�, and define J�1
�� �

K�1
�� � �1=���0

��0
�, where � is arbitrary. D0

jk is treated
similarly. Because of rotational invariance of the ex-
change interactions, the matrix D (as well as J ) does
not depend on local rotations, and needs to be calculated
only once, and used during all simulation time steps.

A few remarks are in order. (i) The term V is included
perturbatively in the equations of motion (3), as is also
done in MM; this is valid since V � H 0 (see above).
These terms depend on gross variables only, and they are
the same as in the MM theory (e.g., the uniaxial anisot-
ropy term is K sin2�j). (ii) The finite-temperature effects
are omitted here (no heat bath), so the energy of the
small-scale modes does not fluctuate. Thus, Eqs. (3) de-
scribe an isolated system (including the small-scale
modes), and its energy is constant, up to small errors
stemming from space-time discretization in the simula-
tions. (iii) Above, we made no reference to the dimen-
sionality of the system. The CG approach is applicable to
1D, 2D, or 3D systems, as long as local-equilibrium
theory is valid. (iv) The nondiagonal elements of the
interaction matrix Djk decrease exponentially fast with
the distance from the diagonal, and the product �MD�jn is
practically banded [for the example below, j�MD�jnj<
10�7 for jj� nj > 14]. Since most of the computational
work usually arises from the long-range magnetostatic
interactions (included in V ), the increased (in compari-
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son with MM simulations) effort in treating the exchange
torques is not significant, but is essential for obtaining
correct dynamics. Below, we omit the magnetostatic in-
teractions only for simplicity; in detailed simulations they
should be included.

We present one typical numeric test case out of many
other simulations we have performed. We consider a 1D
chain of N � 465 spins with ferromagnetic nearest-
neighbor coupling J � 25, and antiferromagnetic next-
nearest-neighbor coupling J0 � �#J � �2:5. 1D models
can describe, e.g., thin magnetic nanowires with radius
R�

���������
J=K

p
, when the nonuniformity of magnetization in

the lateral dimensions is negligible. The spins possess
single-ion anisotropy of easy-axis type, K � 0:01 (the
easy-axis coincides with the z axis); the dipole-dipole
interactions are neglected for simplicity. The ends of the
chain are different from the bulk; this represents, e.g., a
nanowire which has defects at the ends causing the pa-
rameters J, J0, and K to be different from their bulk
values. Thus, six spins at one end of the chain are chosen
to have the following parameters: J01 � 0:5J, J12 � 0:6J,
J23 � 0:7J, J34 � 0:8J, J45 � J56 � J, K0 � �0:4K,
K1 � �0:2K, K2 � 0, K3 � 0:2K, K4 � 0:4K, and K5 �
0:8K. At the other end of the chain, the last six spins have
the same parameters in reverse order. Initially, the chain
is magnetized to saturation, so that Sz� � 1 for all �. At
t � 0, the external field H � 0:02 is applied at the angle
� � �0:4( to the z axis in the y-z plane, and the spins
start rotating. Since we omit dissipation and fluctuations
(considering temperature T � K� J), the total energy
of the system is conserved. Without the defects, all the
spins would rotate in unison, and the magnetization dy-
namics would be periodic and trivial. However, in the
presence of the perturbation caused by the defects, differ-
ent spins rotate with slightly different rates, and the
system’s motion becomes chaotic. After some time, the
Zeeman energy is transferred to the exchange energy,
leading to a gradual decrease of the system’s total mag-
netization [17].
067201-3
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FIG. 2. The magnetization profile in the chain (the angles ��
and ��) at t � 60* calculated by three methods: large white
circles, atomic simulations; small black circles, MM simula-
tions; crosses, CG scheme. Initial conditions correspond to
chain uniformly magnetized along the y axis. The values of
�� and �� at the nodes of the MM grid are shown.
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To compare the performance of the MM and CG
schemes, we have modeled the system’s dynamics by
(i) atomic simulations which give the exact solution,
(ii) by standard FEM micromagnetic simulations [9],
with the number of spins in the cell varying from five
(in the middle of the chain) to one (at the ends), and
(iii) by the CG scheme described above, with the same
grid as used in the MM simulations. The computational
parameters have been kept the same for all schemes. The
temporal dependence of the chain’s total magnetization

Stot�t� �
�������������������������������������������
S2x�t� � S2y�t� � S2z�t�

q
is shown in Fig. 1, where

the time is measured in units of * � 0:4(=jH sin�j � 66.
The MM simulations (black circles) differ considerably
from the exact atomistic solution, while the CG scheme
gives results practically coinciding with the atomistic
simulations. The same conclusion can be drawn from
Fig. 2, where the magnetization profile in the chain is
shown at t � 60*. The spin direction at every atomic site
S� is characterized by the polar �� and azimuthal ��
angles.

The drastic difference between the CG and MM
schemes is caused by the essential nonlinearity of mag-
netization dynamics. In the course of the system’s motion,
a considerable number of atomic-scale excitations are
generated near the defects. In contrast with the MM
theory, the coarse-graining approach accurately describes
the collective properties of these excitations, and their
effect on large-scale dynamics.We have checked different
models, with different parameters J, J0 (including J0 �
0), K, and H, and different dynamical regimes (domain
wall motion, linear, and nonlinear one-magnon dynam-
ics, etc.), and found that CG scheme performs well, while
the MM approach is often inadequate. Our preliminary
results on 2D models also support this statement.

In summary, we have shown that the standard micro-
magnetic theory does not always handle correctly the
067201-4
dynamics of nonlinear multiscale magnetic processes.
We have suggested another approach, based on statistical
coarse graining, which is applicable to nonlinear prob-
lems. Numerical tests on 1D systems show that the CG
scheme gives almost exact results for rather large time
spans. The basic ingredient of the coarse-graining ap-
proach is the standard theory of local equilibrium, so it
can be applied to a large set of 2D and 3D problems where
the local-equilibrium theory is valid.
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