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Stable Oscillations of a Spatially Chaotic Wave Function in a Microstadium Laser
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Laser action on a single spatially chaotic wave function is obtained as a final stable state in a
nonlinear dynamical model of a stadium shaped resonant cavity with an active medium. The stable
single-mode lasing state corresponds to a particular metastable resonance of the cavity which wins a
competition among multiple modes with positive net linear gain and has a distinct lasing threshold.

DOI: 10.1103/PhysRevLett.90.063901 PACS numbers: 42.65.Sf, 05.10.–a, 05.45.Mt, 05.65.+b
FIG. 1 (color). The initial state of the light field. The final

We have checked that this model reproduces the lasing
characteristics of the conventional microdisk lasers [8].

stationary state does not depend on the initial state. The white
curve denotes the stadium cavity.
The nonlinear interaction between the light field and
the lasing medium has been an open problem for the
studies of lasing in two-dimensional resonant cavities
such as microdisk lasers. Previously, only the correspond-
ence between rays and linear wave modes has been used
to understand the lasing in circularly symmetric cavities
[1]. The whispering gallery modes observed to lase in
microdisk lasers correspond to a set of ray trajectories
which never escape the cavity. A ray description has also
been applied to the lasing mechanism of the deformed
cavity proposed for spoiling high confinement of light in
the microdisk and getting some laser light out of the disk
[2,3]. The ray-dynamical trajectories in these deformed
cavities become chaotic, but not fully chaotic, and still
have stable periodic orbits, and, hence, it is still possible
to understand the relation between shape and optical
confinement properties in terms of ray trajectories [2,3].

This method of understanding cavity modes in terms of
ray trajectories becomes much less effective in fully
chaotic cavities. Fully chaotic cavities do not have any
stable ray trajectories, and the optical modes inside the
cavity are typically complicated wave functions which do
not have a simple description in terms of a periodic or
quasiperiodic ray trajectory inside the cavity [4]. Ac-
cordingly, it is difficult to predict what type of modes
will lase, and whether they can be expected to lase stably
in fully chaotic cavities.

In this Letter, we show that a fully nonlinear dynami-
cal treatment of lasing in a fully chaotic cavity gives
single-mode oscillation of a spatially chaotic wave func-
tion. For the cavity shape, we chose Bunimovich’s sta-
dium as shown in Fig. 1, which is well known as a shape
which has been exactly proven to be fully chaotic, and has
been a popular model in research on classical and quan-
tum chaos [5–7]. For the laser model, we use the
Schrödinger-Bloch model [8]. The Schrödinger-Bloch
model is an approximation of the Maxwell-Bloch model
taking into consideration the nonlinear interaction be-
tween the light field and the lasing medium, and was
originally introduced for the study of microdisk lasers.
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Here we extend this model to a microstadium laser and
derive the criterion for the stable oscillation of the reso-
nance modes.We also show that the spatially chaotic wave
function of the stationary lasing oscillation excellently
corresponds to the quasistationary state of the resonance
obtained by an extended boundary element method.

First, let us briefly review how to simulate the light
field in a two-dimensional microcavity with an active
medium [8,9]. We assume a two-dimensional optical
waveguide whose thickness is less than the wavelength,
and which contains a lasing medium. We also assume the
waveguide is wide in the xy directions and thin in the z
direction, and that the refractive index suddenly changes
on the edge of the cavity.

In order to describe the active gain medium in inter-
action with the light field, we use the well-known two-
level model, the optical-Bloch equation. The two-level
medium in turn contributes to the Maxwell equation as
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the radiation source term. Thus, the time evolution of the
TM wave of the light field obeys the two-dimensional
Maxwell-Bloch equation [9].

Let !0 be the transition frequency of the two-level
medium and suppose ~EE and ~�� are the slowly varying
envelope of the electric field and the polarization field.
Then, the slowly varying envelope approximation for
time yields the following set of equations composed of
a Schrödinger equation for ~EE:
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where space and time are made dimensionless by the
scale transformation �nin!0x=c; nin!0y=c� ! �x; y� and
t!0 ! t, respectively. In the above, the refractive index
n equals nin inside the cavity and nout outside the cavity,
and �L�x; y� is the linear absorption coefficient, which is
the constant �L inside the cavity and zero outside the
cavity. In the Bloch equation, W is the population inver-
sion component, and the two (dimensionless) relaxation
parameters ~��? and ~��k are the transversal relaxation rate
and the longitudinal relaxation rate, respectively, and W1

is the external pumping parameter. ~�� is the dimensionless
coupling strength. We refer to this as the 2D Schrödinger-
Bloch model.

Now we derive the criterion for stable oscillation so-
lutions of the Schrödinger-Bloch equation. We assume
that the light field and polarization oscillate as ~EE�r; t� �
e�i
tÊE�r� and ~���r; t� � e�i
t�̂��r�, where 
 is a real num-
ber and denotes the steady-state oscillation frequency
while the population inversion does not oscillate and
W�r; t� � W�r�. Then we obtain a nonlinear steady-state
equation,�
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ÊE �

i2��
�~��kW1

~��k �
4~��2 ~��?

~��2
?
�
2 jÊEj2
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The real part of ��
� is the linear laser gain, which is
maximum for 
 � 0.

The difference between Eq. (4) and the usual linear
Schrödinger-Helmholtz equation is the terms, in the
right-hand side of Eq. (4), which contain the linear loss
063901-2
due to absorption �L�x; y� and the laser gain ��
�.
Without these terms, we can obtain the quasistationary
states, i.e., the resonances of the cavity as the eigenmodes
of the Schrödinger-Helmholtz equation. The resonance
frequencies are obtained as the complex-valued eigenval-
ues 
j. The real part Re
j of the eigenvalue represents
the oscillation frequency of the quasistationary state. The
imaginary part Im
j�<0� of the eigenvalue represents
the decay rate of the quasistationary state.

If we include the first order correction of 
j due to the
presence of the linear absorption loss and gain terms in
Eq. (4), 
j is modified as


j � Re
j � i�tot � i��Re
j�; (7)

where �tot � �Im
j � �L stands for the total linear
loss, and the imaginary part of the last term is the linear
laser gain.

When the gain term, Re��Re
j�, exceeds the total
linear loss, the corresponding mode grows exponentially
and can lase. Accordingly, we obtain the condition for an
eigenmode to lase:
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Such a linear description is correct only when the field
intensity is weak. How a mode behaves asymptotically is
answered only by the full nonlinear analysis of the
Schrödinger-Bloch equations (1)–(3). The whispering
gallery modes have been obtained as solutions of Eq. (4)
in the case of a circular resonant cavity, and their stabili-
ties have been checked by the dynamical simulation of
Eqs. (1)–(3) [9,10]. However, in the case of the resonant
cavity of a stadium shape, it is very difficult to solve
Eq. (4). Therefore, the dynamical approach is extremely
important in the case of a microstadium laser.

We simulated the time evolution of the light field
starting from an initial condition of a Gaussian wave
packet of width 5.0 centered at the point (5.0,1.0) (with
respect to the center of the cavity) in a stadium shape
cavity which consists of two half circles of the radius R �
49=4

���
2

p
� 8:75 and two flat lines of the length 2R as

shown in Fig. 1. We set the refractive index inside and
outside the stadium nin � 2 and nout � 1, respectively.
The other parameters are reported to be as follows: ~��k �
0:03, ~��? � 0:06, � � 4:0, �L � 0:004, N~�� �h!0 �
N� �h � 0:5. In this Letter, all the quantities are made
dimensionless. If we would assume the vacuum wave-
length of the lasing mode is 0:86 �m, the length of the
flat side of the stadium would be 1:2 �m.

We extended the boundary element method in order to
solve the linear Schrödinger-Helmholtz equation under
the boundary condition that the refractive index suddenly
changes on the edge of the cavity. The resonances ob-
tained by the extended boundary element method are
shown in Fig. 2. The lasing condition (8) is evaluated in
the case that the pumping power W1 � 0:003. The single
and double circles in Fig. 2 satisfy the lasing condition (8)
063901-2
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FIG. 2. Resonances of a microstadium cavity. The double
circle denotes the resonance corresponding to the stable oscil-
lation obtained as a result of time evolution simulations. The
single circles have enough lasing gain to exceed the linear loss
and satisfy the condition (8), but they lose mode competition
with the resonance of the double circle in the course of time
evolution. The crosses correspond to the resonances which do
not satisfy the condition (8).
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FIG. 4. The power spectrum obtained from the time evolu-
tion of the light field in the time region of a stable oscillation.
The oscillation frequency corresponds well to that of the
resonance denoted by the double circle in Fig. 2.
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while the crosses correspond to the resonances that do not
satisfy (8).

In order to carry out the dynamical simulation, we
used the symplectic integrator method for the
Schrödinger equation and the Euler method for the Bloch
equations [11]. The total light intensity inside the stadium
is small at first; however, it grows exponentially and
saturates to be a constant as shown in Fig. 3. In Fig. 4,
we show the power spectrum of the time evolution of the
light field in the time region after the saturation. It shows
a sharp peak precisely corresponding to the real part of
the resonance frequency of the double circle in Fig. 2.
From the results of Figs. 3 and 4, one can see that the laser
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FIG. 3. Time evolution of the total light intensity inside the
stadium cavity. The intensity grows exponentially and finally
saturates to be constant, which means that the light field finally
becomes a stationary oscillating state.
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action occurs on the resonance marked by the double
circle in Fig. 2.

Indeed, the spatial wave function of the final stable
state shown in Fig. 5 excellently corresponds to the
wave function of the resonance marked by the double
circle in Fig. 2 shown in Fig. 6 obtained by an extended
boundary element method. Therefore, we conclude that
only the resonance mode of the double circle in Fig. 2
wins the mode competition with the other resonance
modes and can lase. We were unable to identify closed
ray trajectories corresponding either to the lasing mode in
Fig. 5 or to the other quasibound states in Fig. 2, and
FIG. 5 (color). The final stable oscillation of a spatially cha-
otic wave. It oscillates with the peak frequency shown in Fig. 4.
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FIG. 6 (color). The wave function of the metastable resonance
of the double circle in Fig. 2. This spatially chaotic wave
function is a solution of the linear Schrödinger-Helmholtz
equation and excellently corresponds to Fig. 5.
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FIG. 7. Light intensity vs pumping power. A threshold phe-
nomenon is observed as in the case of usual lasers.
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therefore we were not able to use total internal reflection
as a criterion to predict which resonance wave function
would lase. Our dynamical simulation shows that around
the threshold single-mode lasing always occurs on the
resonance mode which satisfies the inequality (8) best.
However, in general, only the fully nonlinear dynamical
simulation gives the lasing characteristics.

Figure 7 shows the total light intensity inside the
stadium cavity as a function of the pumping power W1.
When the pumping power W1 is smaller than 0.00164,
the resonance mode of the double circle in Fig. 2 does not
satisfy the lasing condition (8) and it cannot lase. The
threshold phenomenon is clearly seen, as in the case of
conventional lasers. The actual lasing threshold is around
0.002, slightly larger than the value 0.00164 predicted by
the lasing condition (8).

Finally, let us remark that recently a semiconductor
laser with the microstadium shape has been actually
fabricated by using an MBE-grown GRIN-SCH-SQW
GaAs=AlGaAs structure and a reactive-ion-etching tech-
nique [12]. The length of the flat side of the stadium is
30 �m. On the other hand, the lasing wavelength is about
0:26 �m inside the microstadium cavity, which is much
smaller than the size of the cavity. Consequently, our
nonlinear dynamical method described above cannot be
applied to this semiconductor microstadium laser diode
with the present computation power. However, the ex-
tended boundary element method can be used to calculate
the resonances and identify which resonance mode cor-
responds to the observed wavelength and far field pattern.
The relation between the injection current and the inten-
sity of the output light from this microstadium laser
shows a threshold phenomena characteristic of onset of
063901-4
lasing. A sharp narrowing of the optical spectrum above
threshold is also observed. Therefore, the experimental
observation of lasing in the real semiconductor micro-
stadium has also demonstrated that lasing is possible in
fully chaotic cavities.
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