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Average Shape of a Fluctuation: Universality in Excursions of Stochastic Processes
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We study the average shape of a fluctuation of a time series x�t�, which is the average value hx�t� �
x�0�iT before x�t� first returns at time T to its initial value x�0�. For large classes of stochastic processes,
we find that a scaling law of the form hx�t� � x�0�iT � T�f�t=T� is obeyed. The scaling function f�s� is,
to a large extent, independent of the details of the single increment distribution, while it encodes
relevant statistical information on the presence and nature of temporal correlations in the process. We
discuss the relevance of these results for Barkhausen noise in magnetic systems.
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FIG. 1. Schematic illustration of the average excursion.
Top: the signal x�t� is shown and two successive positive
fluctuations above x�0� are indicated. Bottom: the two fluctua-
the time needed for x�t� to return for the first time to x�0�. tions are rescaled and compared to the average shape.
Many experimental investigations of a wide range of
complex systems involve the measure of some scalar ob-
servable over long time intervals, during which the signal
exhibits nontrivial fluctuations around some average
value or avalanchelike bursts of activity separated by qui-
escent intervals [1]. A few examples are Barkhausen noise
in magnetic materials [2], solar flares in astrophysics [3],
seismic activity in geophysics [4], or prices in financial
markets [5]. The statistical features of such fluctua-
tions reflect the properties of the dynamics that generates
them, and their analysis is a key point for understand-
ing the system under investigation. Traditional tools for
characterizing temporal series are correlation functions,
distributions of durations of fluctuations and of their
amplitudes. Here we focus on the average shape of a
fluctuation, showing that it contains crucial pieces of
information about the nature of the underlying process.
Since this quantity can be easily extracted from experi-
mental data, it is a useful tool in the statistical analysis of
temporal series.

The average shape of a fluctuation has lately been the
subject of interest in the study of the Barkhausen effect
[1,6,7], where it has been used as a stringent test for the
validity of theories against experiments. All current
models, successfully used to describe most of the features
of the phenomenon, are, however, unable to reproduce the
form of fluctuations (pulses) measured experimentally
[8]. In particular, while all models predict a shape sym-
metric with respect to its middle point, empirical data
yield a skewed form. This indicates that the understand-
ing of the Barkhausen noise is still incomplete. Moreover,
it shows that the average shape of a fluctuation is a sharper
tool for discriminating universality classes than critical
exponents [1]. Motivated by these recent results, we ap-
proach theoretically the problem of finding the average
shape of a fluctuation for a generic signal and of under-
standing which statistical features of the process generat-
ing the signal are encoded in this curve.

Let us define precisely what we intend by average
fluctuation of a generic signal (Fig. 1). If x�t� is the
amplitude of a signal, we define as duration T of the pulse
0031-9007=03=90(6)=060601(4)$20.00 
Collecting positive pulses of the same duration, we in-
troduce the average amplitude of the signal after time t
elapsed from the beginning of a fluctuation hx�t� � x�0�iT .
Interpreting x�t� as the position of a one-dimensional
walker at time t, hx�t� � x�0�iT is the average trajectory
of the walker before it returns to the starting position x�0�
and is obtained by summing over all positive walks
starting at time t � 0 in x � x�0� and constrained to
return for the first time to x�0� at time t � T.

In this Letter, we compute this average trajectory for
stochastic processes of the form

x�t� 1� � x�t� � ��t� (1)

with x�0� � 0 [9]. The increment ��t� is a random vari-
able. Despite the simplicity of the processes considered,
we uncover a rich phenomenology. We find that, in all
cases considered, a scaling law is obeyed

hx�t�iT � T�f�t=T�; (2)

in appropriate time regimes. The value of the exponent �
results to be equal to the wandering exponent of the
‘‘free’’ process (i.e., not constrained to return to 0 at
2003 The American Physical Society 060601-1
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FIG. 2. Main: Normalized average fluctuation hx�t�iT for a
random walk with power-law distributed steps with � � 0:7.
The solid line represents the universal function (4). Circles are
for several values of T ranging from 199 to 9699.
Inset: Normalization factor N�T�, which scales as T1=�, in-
dicating that � � 1=�. The dashed line is proportional to T1=�.
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time T nor to be always positive). The scaling function
f�s� turns out instead to be a sensitive probe of temporal
correlations of the dynamical process, while it is to a
large extent independent on the statistics of single incre-
ments. In particular, for uncorrelated noise the scaling
function is always proportional to a semicircle. For cor-
related noise the tails are universal with respect to the
single step distribution, and they depend only on the
short- or long-ranged nature of the correlations.

We consider processes of the form (1) and focus our at-
tention on the trajectory of a walk originating in x�0� � 0
at time 0 and returning to x�0� for the first time at time T,
known in the mathematical literature as excursion. We
first study the case of uncorrelated random walks and
Levy flights and then analyze the effect of correlations.

(i) Gaussian walks.—The simplest process of this
kind is the uncorrelated unbiased random walk, where
h��t�i � 0 and h��t���t0�i � 
t;t0 . Using the time-
reversal symmetry the average trajectory can be writ-
ten as

hx�t�iT �

R
1
0 dxxF�x; t�F�x; T � t�R
1
0 dxF�x; t�F�x; T � t�

; (3)

where F�x; t� is the probability that a walker starting in
x � 0 at time 0 reaches x at time t without ever touching
the axis x � 0.

If we consider a normal distribution for single steps,
F�x; t� can be determined via the image method [11]. The
result for hx�t�iT is of the form (2) with � � 1=2 and
scaling function proportional to a semicircle [10]

fU�s� �

����
8

�

r �����������������
s�1� s�

p
: (4)

The exponent �, being equal to the value characterizing a
free walk, indicates that the constraint of returning at
time T does not affect the amplitude of the excursion. The
same value of � and the same expression (4) for f�s� are
expected for any distribution of single steps P��� with
finite variance, for which the central limit theorem holds.
Equation (4) can be obtained explicitly for bimodal P���.

To extend our analysis to other processes, we resort to
numerical simulations for the evaluation of hx�t�iT . We
consider walks starting at x � 0 at some negative time,
and we take as t � 1 the first time such that x�t� > �,
where � is a small positive threshold. We average over all
walks that first return between 
��; �� at a specified time
T, under the constraint x�t� > � for 1< t < T. For each
time T the average shape is normalized by the factor
N�T� �

R
1
0 dshx�sT�iT . If the scaling form (2) holds, the

normalized shapes for different T collapse on a single
curve and N�T� grows as T�. We average from 104 to 107

pulses for each T. However, as shown in experiments [8],
smaller statistics (� 103 pulses) is already sufficient for
reasonably clean curves.

(ii) Levy flights.—While it is well known that random
walks with finite variance of the step distribution belong
to the Gaussian universality class, distributions with fat
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power-law tails give rise to a completely different behav-
ior [12]. For this reason, we consider now process (1)
where the distribution of independent increments � has
infinite variance, i.e., with tails decaying as P��� /
j�j���1 where 0<�< 2. Although hx�t�iT can still be
written in the form (3), F�x; t� cannot be computed by the
image method. We find numerically that also in this case
the scaling form (2) is obeyed, with � � 1=� and the
scaling function f�s� of the same semicircular shape (4)
of the case with finite variance. This holds for any � > 0
[in Fig. 2 we show hx�t�iT for � � 0:7], thus even regard-
less of the existence of the first (absolute) moment of the
single step distribution [13].

While a scaling exponent � equal to the wandering
exponent of the free process could be expected [14], the
fact that the shape of the scaling function remains exactly
the same is surprising. Note that the short time expansion
of Eq. (2)

hx�t�iT / T1=��1=2t1=2 (5)

in the Gaussian case � � 2 gives hx�t�iT / t1=2, equal to
the wandering of the unconstrained walk. One could
naively expect by analogy a short time behavior as t1=�

for �< 2 (corresponding to the free walk). Equation (5)
shows that this is not the case, indicating that the Levy
flight feels the constraints even for short times.

Universality in the shape of the scaling function is
not restricted to changes of the variance h�2i of the single
step distribution. Also variations of the mean value h�i,
corresponding to the addition of a bias to the walk, do not
modify f�s�. This is easily shown analytically in the case
of Gaussian or bimodal P��� and has been checked
numerically for the other cases. Therefore, we can
conclude that, for all processes of the type (1) with
060601-2
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uncorrelated noise, the scaling function f�s� is given
by (4).

(iii) Walk in a parabolic well.—A further generaliza-
tion is to consider a walk in a harmonic potential

x�t� 1� � x�t� � �x�t� � ��t�; (6)

where the term �x describes the effect of a parabolic
well. The damping � introduces a characteristic time, of
order 1=�, so that scaling breaks down for large times.
The probability for the walker to return at time T, i.e.,
the distribution of return times P�T�, remains the same
(/ T�3=2) for T � 1=�, while it decays exponentially for
T � 1=�. The average fluctuation can again be computed
analytically via the image method and is [10]

hx�t�iT �

��������������������������������������������������������������
4

��
�1� e�2�t��1� e�2��T�t��

�1� e�2�T�

s
: (7)

As shown in Fig. 3, for T � 1=� we get a semicircle, the
same result as for � � 0. For larger T instead, as corre-
lations decay, the form of the fluctuation tends to become
flat, while keeping the �t=T�1=2 [�1� t=T�1=2] behavior at
the left (right) tail. This is strongly reminiscent of the
flattening observed experimentally by Durin and Zapperi
in the study of the Barkhausen noise in magnetic systems
[15]: indeed, in that case the damping term is provided by
the demagnetizing field, which controls the cutoff in the
avalanche distribution [16].

So far we have considered processes with increments
��t� extracted independently at each time step. Let us now
analyze the effect of temporal correlations in the stochas-
tic noise. More precisely, we consider processes such that
g�t; t0� � h��t���t0�i � h��t�ih��t0�i � 
t;t0 .

(iv) Short-ranged memory.—Let us first study the
case of noise with correlations decaying exponentially
over some interval �, i.e., g�t; t0� � exp��jt� t0j=��. The
average fluctuation for this process, evaluated numeri-
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FIG. 3. Average excursion for a random walk in a parabolic
well [Eq. (7)] for 1=� � 20. From top to bottom, lines are for
T � 10, 25, 50, 100, and 250. Notice that the shape flattens to
the constant value
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cally, is reported in Fig. 4, showing the existence of two
regimes. When T � � the shape of hx�t�iT is parabolic,
similar to what has been observed in [8] for the random
field Ising model. The detailed form depends on the
distribution of single steps P��� and, in particular, it is
skewed for power-law distributed �. However, some form
of universality with respect to P��� is present also in this
case: the tails of hx�t�iT , which go to zero linearly both for
small s (Fig. 4, inset) and for s! 1 (not shown). In the
long time limit T � �, memory in the noise is lost and, as
expected, we recover the semicircular shape (Fig. 4) that
characterizes processes with uncorrelated increments.

(v) Long-ranged memory.—We finally analyze a sto-
chastic process with long-ranged memory, given by
Eq. (1), where now ��t� �

P
i�1;t ��i� and ��i� is an un-

correlated noise. This process can be seen as a temporally
discrete version of the continuous process @2t x � ��t�,
which is known as the random accelerated particle
(RAP) and has been studied in the context of inelastic
collapse of granular matter [17]. For a distribution of ��t�
with unitary variance, the correlation function of ��t� is
g�t; t0� � min�t; t0� and hence it does not decay when the
difference between t and t0 grows. The first-return proba-
bility to the origin of the walker has been recently shown
analytically to decay as P�T� / T�5=4 [18]. By evaluating
numerically the average fluctuation hx�t�iT , we recover
the scaling form [Eq. (2)], with � � 3=2, that again
corresponds to the wandering exponent for the uncon-
strained process. The normalized scaling function, plot-
ted in Fig. 5, is indistinguishable from the simple curve

f�x� �
x3=2�1� x�
B�3=2; 1�

; (9)
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FIG. 4. Main: Normalized average fluctuation hx�t�iT for a
random walk fed by noise with short time memory
(� � 1000). Empty symbols are for uniformly distributed �;
the solid ones are for power-law distributed � with � � 3=2.
Circles are for a time of the order of �; triangles are for T � �.
The solid line represents the universal function (4) after nor-
malization. Inset: Tails for small t=T. The straight dashed line
has slope 1.
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FIG. 5. Main: Normalized average fluctuation hx�t�iT for the
random accelerated particle. Triangles are for uniformly dis-
tributed �; squares and circles are for power-law distributed �,
respectively, with � � 1:5 and � � 0:7. T ranges from 1000 to
100 000. Inset: Tails for small t=T. The straight line has
slope 3=2.
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where B is the Beta function. For a RAP with power-law
distributed � (infinite variance), the exponent � is 1�
1=� (again as in the free case). As in the case with short-
ranged correlations, the scaling function differs from the
case with finite variance (Fig. 5), and the asymmetry is
more evident for small �. Nevertheless, the behavior of
the tails remains universal, being f�s� / s3=2 for s ! 0
(see Fig. 5, inset) and f�s� / 1� s for s ! 1 (not shown).

In conclusion, we have tackled theoretically the prob-
lem of analyzing generic time series from the point of
view of the average shape of their fluctuations. In par-
ticular, we have studied this quantity for stochastic pro-
cesses of the form (1). We find that the scaling law
hx�t�iT � T�f�t=T� is obeyed in an appropriate time re-
gime. The exponent � coincides with the wandering ex-
ponent of the unconstrained process, as can be expected
on the basis of scaling arguments. More interestingly,
the scaling function f�s� exhibits some degree of univer-
sality. For any process with uncorrelated increments f�s�
is proportional to a semicircle, with no dependence
whatsoever on the distribution of single steps. Modifi-
cation of this shape can be obtained only via additional
x-dependent terms in Eq. (1) or by introducing correla-
tions in the stochastic increments. In this last case, the
detailed shape depends on the distribution of single
increments, the tails are universal, depending only on
the short- or long-ranged nature of noise correlations.
Because different universal behaviors encode solely cor-
relation properties of the signal, this quantity is a power-
ful tool in the statistical analysis of temporal series: In
many systems it would be very interesting to compare
quantitatively hx�t�iT between experiments and models
in light of our results. In the case of Barkhausen noise,
where this comparison has pointed out the limitations
060601-4
of current models, our study provides a guide for refin-
ing them in order to better capture the physics of the
phenomenon.
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