
P H Y S I C A L R E V I E W L E T T E R S week ending
14 FEBRUARY 2003VOLUME 90, NUMBER 6
Purification through Zeno-Like Measurements
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A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result
in the ‘‘purification’’ of another quantum system in interaction with the former. Even though the
measurements are performed on the former system, their effect drives the latter into a pure state,
irrespectively of its initial (mixed) state, provided certain conditions are satisfied.
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only on the system of interest. Here, we consider such
measurements and address the following point: How does

erator acting on the Hilbert space of system B. The
density operators of the total and B systems read
It is well known that unstable particles or quantum
states display a peculiar behavior at short and long times
[1]. Phenomenologically, they are known to decay expo-
nentially and this is well confirmed experimentally [2].
Short-time deviations were observed only very recently
[3]. The deviations from the familiar exponential decay
law are unavoidable consequences of the quantum dy-
namics both at short and long times, and the derivation of
the exponential decay law itself is not a trivial matter in
quantum mechanics. These deviations reflect the unitar-
ity of the time-evolution operator or the time reversal
symmetry of the Schrödinger equation at short times and
the lower boundedness of the Hamiltonian or the stability
of the vacuum at long times. See, e.g., Ref. [1] for a review.

The quantum behavior of unstable states at short times
has been one of the central issues of investigation and
discussion in recent years, since it is closely connected to
the so-called quantum Zeno effect (QZE) [4,5], where the
act of measurement [6] (usually represented by the
von Neumann projection or the generalized spectral de-
composition [7]) affects in an essential way the dynamics
of the measured system and results in a hindrance of the
decay process. The first attempt at the experimental ob-
servation of the QZE in an atomic transition process [8],
following Cook’s theoretical work [9], has triggered
heated discussions on this subject. Furthermore, another
exciting experiment has been reported very recently: the
observation of the QZE (and also of the inverse QZE [10])
in an atomic tunneling process [11], which is the first
experimental observation of the (inverse) QZE in a truly
unstable quantum system, unlike in the previous experi-
ment [8] performed on an oscillating system.

In this Letter, we will shed new light on another (and so
far not well explored) feature of the quantum dynamics
with measurements, closely related to the QZE. Notice
first that the system under consideration cannot be con-
sidered completely isolated and usually interacts with
other systems. Therefore, it would be interesting and
maybe more realistic to consider the case where the
measurement, represented by a von Neumann projection
for simplicity, is not performed on the total system, but
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a series of frequent measurements on a system affect
the dynamics of another system in interaction with the
former? Under frequent measurements performed only on
the former system, the latter evolves away from its initial
state. We shall show that such measurements can result in
a purification phenomenon. That is, a series of frequent
measurements on system A, represented by projections on
a given (usually pure) state of A, makes the state of
system B, which interacts with A and is initially in any
(mixed) state, approach a pure state, if certain conditions
prescribed below are satisfied.

Let a total quantum system A� B be described by a
Hamiltonian H of the form

H � HA �HB �Hint; (1)

whereHA�B� stands for a free Hamiltonian of system A(B)
and Hint for an interaction. We prepare system A in its
initial (pure) state j�ih�j at time t � 0. The initial state
of system B, denoted by �B, can be arbitrary. The initial
state of the total system is

�0 � j�ih�j � �B (2)

and its dynamics is governed by the Hamiltonian (1)
unless it is interrupted by a series of measurements on
system A, each of which is represented by a projection
operator O � j�ih�j � 1, performed at time intervals �.
Notice that this operator, even if it is a bona fide projec-
tion operator (we assume that j�i is normalized), does not
return the time-evolved total system to its initial state.
The projection is partial, in the sense that only the state of
system A is set back to its initial state and that of system
B is not initialized, even though the dynamics of B is
certainly affected.

After N such measurements have been done, the sur-
vival probability of finding system A still in its initial
state is represented by

P����N� � Tr	�Oe
iH�O�N�0�Oe
iH�O�N�

� TrB	�V�����N�B�V
y
�����

N�: (3)

Notice that the quantity V����  h�je
iH�j�i is an op-
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�����N� � �Oe
iH�O�N�0�Oe
iH�O�N=P����N�

� j�ih�j � ����B �N�; (4a)

����B �N� � �V�����N�B�V
y
�����

N=P����N�; (4b)

respectively. We collect only the right outcomes of mea-
surements: this is implicit in the normalization factors in
(4). Experimentally, this means that after each measure-
ment, only those events will be retained in which system
A has been found in its initial state.

In the ordinary situation, one performs infinitely fre-
quent measurements by taking N ! 1 and �! 0, keep-
ing N� � T, a finite nontrivial value; one easily checks
that the ordinary QZE [1] appears in this case and the
survival probability P����N� increases as N becomes
large, approaching unity in the N ! 1 limit [5]. At the
same time, the dynamics of system B becomes unitary in
this limit, and this is an example of the so-called ‘‘quan-
tum Zeno dynamics’’ [12]. However, we stress that our
interest lies in a different situation: we keep the time
interval � between measurements finite and nonvanish-
ing. If N were taken to be 1, the survival probability
P����N� would decay out completely for such � � 0, but
we are interested in the asymptotic behavior of the state
of system B for large but finite values ofN. We expect that
the effect of repeated measurements on system A would
modify the dynamics of system B through its interaction
with the measured system A, even if B has never been
directly measured. To examine this idea, we need to
clarify the asymptotic behavior of the state of system
B, ����B �N�, for large N.

It is clear that the behavior of ����B �N� is governed by
the operator V���� in (4). Let us consider its eigenvalue
problem. Since this operator is not Hermitian, Vy

���� �

V����, in general, we need to set up both the right- and
left-eigenvalue problems

V����jun� � �njun�; �vnjV���� � �n�vnj: (5)

The eigenvalue �n is in general complex valued. Let us
assume that the spectrum of the operator V���� is discrete
and nondegenerate, and its eigenvectors form an ortho-
normal complete set in the following sense:X

n

jun��vnj � 1; �vnjum� � �nm: (6)

[It will soon become clear that the assumption of the
nondegenerate spectrum is not essential for the following
discussion except for that of the largest (in magnitude)
eigenvalue �max.] The operator itself is expanded in terms
of its eigenvectors

V���� �
X
n

�njun��vnj; (7)

and we obtain
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�V�����
N �

X
n

�Nn jun��vnj: (8)

One can show [13] that the absolute value of the eigen-
value �n satisfies the inequality 0 � j�nj � 1, 8n, which
reflects the unitarity of the time-evolution operator. It is
now evident that, in the large N limit, the operator (8) is
dominated by a single term

�V�����
N ���!large N

�Nmaxjumax��vmaxj; (9)

where jumax� and �vmaxj are the eigenvectors belonging to
�max, provided the largest (in magnitude) eigenvalue �max

is unique, discrete, and nondegenerate.
Thus we reach the conclusion, under the assumption of

unique, discrete, and nondegenerate �max, that, in the
large N limit with a nonvanishing �, the state of system
B in interaction with system A, on which N measure-
ments are performed at time intervals �, asymptotically
approaches the pure state jumax�

����B �N� ���!large N
jumax��umaxj=�umaxjumax�; (10)

with probability

P����N� ���!large N
j�maxj

2N�umaxjumax��vmaxj�Bjvmax�: (11)

Notice that the final pure state jumax� is independent of the
choice of the initial state of system B, i.e., any initial
(mixed) state shall be driven to the unique pure state
jumax� by repeated measurements performed on the other
system A. Since the asymptotic state jumax� is one of the
eigenstates of the operator V����, we have the possibility
of adjusting the interaction strength and the measurement
interval and of choosing an appropriate initial state j�i
for system A so that a desired pure state jumax� is realized
in system B after a large number of measurements on A
[as long as the probability P����N� does not become mean-
inglessly small]. This discloses another feature of the
Zeno phenomenon: the action of the quantum Zeno-like
measurements dramatically affects the dynamics of sys-
tem B of interest.

A few comments are in order. First, the existence of a
unique, discrete, and nondegenerate �max of the operator
V����, which has been assumed here, is essential for this
purification mechanism. Even though this condition is
satisfied for some systems with a discrete spectrum as
will be shown in the examples below, some definite
mathematical criteria for its validity have yet to be clari-
fied. In particular, it remains open if the present purifi-
cation mechanism can be applied to systems with
continuous spectra. Nevertheless at the same time, it
would be worth stressing that not a few discrete quantum
systems, including two- or three-level systems which
play important roles in the field of quantum information
and computation, certainly fall into the category of
systems with unique, discrete, and nondegenerate �max.
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FIG. 1. Probability P����N� and fidelity F����N� for the model
(12) when the initial state of system A, onto which N mea-
surements are performed, is a coherent state j�i and that of
system B is �B / e
!b

yb=kBT (thermal, i.e., maximally mixed).
The parameters are taken to be ! � 1, g � 0:2, T � 1, � �
0:5, and � � 2�=	���!�=2� �� ’ 5:24 in units such that
�h � kB � � � 1. � is tuned so as to satisfy the condition
j�maxj � 1 [13], and the ratio of the second largest (in magni-
tude) eigenvalue to the largest one �max is jeCj ���������������������������������������
1
 �g=��2 sin2��

p
’ 0:37 [14].
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Second, it is easy to see that the approach to the final pure
state jumax� is governed by the ratio between the largest
and the second largest (in magnitude) eigenvalues of the
operator V����. It is possible that as the number of degrees
of freedom increases, the eigenvalues �n distribute more
closely to each other, which would make the present
purification process less effective. Last, even though the
measurements are repeated many times, as in the bona
fide Zeno case, the present scheme does not explicitly rely
on the peculiar quadratic behavior of quantum systems at
short times. As far as the essential assumption on the
spectrum of the operator V���� is satisfied, there will
be no limit on the time interval �. Notice that the repe-
tition of one and the same quantum measurement is
crucial here.

Let us illustrate the above conclusion in a simple but
still nontrivial model. We consider two single-mode har-
monic oscillators a and b, in interaction in the rotating-
wave approximation. The total Hamiltonian reads

H � �aya�!byb� ig�ayb
 aby�; (12)

where the frequencies � and ! and the coupling constant
g are real parameters. The spectrum is discrete. We pre-
pare system A (oscillator a) in some definite pure state
j�i (typically a number state jnai or a coherent state j�i)
at time t � 0 and let it evolve under the above
Hamiltonian. Then the initial state of system A starts to
evolve towards other states owing to the coupling to
system B (oscillator b), the initial state of which can be
arbitrary. The state of oscillator a is projected onto its
initial state j�i at each measurement, and the interval
between measurements � is taken small, compared with
the typical time scales of the system, e.g., 2�=� in (14)
below.

The eigenvalue problem (5) of the relevant operator
V���� is solved exactly in this case. Indeed, since the
time-evolution operator e
iH� can be factorized as

e
iH� � eAa
ybeBa

yaeCb
ybe
Aab

y
; (13)

in terms of the �-dependent functions

A �
�g=�� sin��

cos��� i	��
!�=2�� sin��
; (14a)

B � 

i
2
���!��
 ln

�
cos��� i

�
!
2�

sin��
�
; (14b)

C � 

i
2
���!��� ln

�
cos��� i

�
!
2�

sin��
�
; (14c)

where � �
�������������������������������������
g2 � ��
!�2=4

p
, we easily find the eigen-

vectors jun� and �vnj of the operator V����, once the
initial state j�i of oscillator a is specified.

If we prepare oscillator a in the number state jnai at
t � 0, the relevant operator is calculated to be
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Vna��� �
Xna
k�0

na!

	�na 
 k�!�
2k!
ekB�
A2eC�na
k

� eCb
yb

Yna
k
‘�1

�byb� ‘�; (15)

from which we understand that the number states jnb� of
oscillator b constitute the set of eigenvectors of the op-
erator (15). Therefore the state of oscillator b is driven to a
number state irrespectively of its initial state, when the
coupled oscillator a is repeatedly confirmed to be in the
number state jnai. The state of system B is purified into a
number state.

On the other hand, when oscillator a is prepared in a
coherent state j�i and found to be in this state at every �,
the relevant operator is rearranged to be

V���� � e
	1
eB
A2=�1
e
C��j�j2eD�b
y;b�; (16)

where the operator D�by; b� is expressed as

D�by; b� � C
�
by �

A��

1
 e
C

��
b


A�

1
 e
C

�
: (17)

It is easily understood that the state of oscillator b
approaches a coherent state bj!� � !j!� with ! �
A�=�1
 e
C�, since this is the right eigenvector of
D�by; b� belonging to zero eigenvalue and therefore that
of V���� belonging to the largest (in magnitude) eigen-
value [14]. The state of system B is again purified into
(another) pure state j!�.

In Fig. 1, the survival probability P����N� and the so-
called fidelity

F����N� � �umaxj�
���
B �N�jumax�=�umaxjumax� (18)
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are shown as functions of the number of measurements N
for the case (16) and (17) with a particular choice of
parameters. In order to make the purification procedure
more effective, it is preferable that (i) the magnitude of
the largest eigenvalue of the operator V���� be close to 1,
j�maxj ’ 1, which maintains the probability P����N� large
enough even for large N [see (11)], and (ii) the other
eigenvalues be all small (in magnitude) compared with
j�maxj, in order to realize a faster approach to the final
pure state jumax�. For this purpose, one may adjust the
relevant parameters, such as the interval between mea-
surements �, the strength of the interaction g, and the
state j�i onto which system A is projected. The condition
j�maxj ’ 1 is satisfied in general if the interval � is taken
to be small enough as in the ordinary Zeno measure-
ments, but one can optimize this procedure and find better
values of �, not necessarily very small [13], that satisfy
both conditions (i) and (ii). See Fig. 1 and its caption,
where � is tuned so as to satisfy the conditions (i) and (ii)
for the case (16) and (17), and the purification mechanism
becomes very effective after only N � 2 steps.

The above arguments clearly and explicitly show how
the action of repeated measurements (projections) on one
system A can affect the dynamics of the other system B
in interaction with A. Interestingly enough, even though
the effect of the measurement on the latter system B is
indirect, its influence is far reaching if the measurement
is repeated many times: irrespectively of its initial
(mixed) state, the state of system B is purified towards
a pure state, provided the conditions on the spectrum of
V���� are satisfied. The final state of system B is pre-
scribed by the total Hamiltonian, the pure state (usually
taken to be the initial state) onto which system A is
projected by the measurement, and the time interval
between successive measurements. This opens a new pos-
sibility on how to control the state of a quantum system
on which we have no direct access. If another system
under our control can be coupled to the former system,
we would only have to decide which state has to be
measured on the controllable system. After such mea-
surements are performed many times at the prescribed
time intervals, the desired pure state would be realized
with some probability in the system beyond our control.

Purification of quantum states is now considered to be
one of the key technologies for quantum information and
computation, and is being widely explored [15] (espe-
cially in the context of ‘‘entanglement purification’’).
Compared to some other procedures, the idea here
is rather simple: one has only to repeat the same mea-
surements. The objects to which the present method is
applicable are general and not restricted to ‘‘qubits.’’
Furthermore, it is worth emphasizing the versatility of
this procedure, i.e., the possibility to adjust the target
pure state, the balance between fidelity and probability
yield, and so on. These issues would deserve further study,
060401-4
for example, in the context of quantum information and
computation.
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