Comment on ''Universal Intermediate Phases of Dilute Electronic and Molecular Glasses''

Phillips [1] has discussed the universal behavior of dilute and molecular glasses just above the critical density n_c for the metal-insulator transition and the origin of the scaling exponent of the conductivity σ $[\sigma(n, T \rightarrow$ $0) \propto (n/n_c - 1)^{\alpha}$ with $\alpha = 1/2$ for weakly compensated doped semiconductors (Si:P, Si:As, Si:B, and Ge:Ga) and suggests $\alpha = 1/2$ provides support for one-dimensional filamentary conduction (fc) paths. This Comment demonstrates how $\alpha = 1/2$ originates from the Boltzmann conductivity when the scattering is dominated by ionized impurity scattering (II*S*) [2]; how the density of states (DOS) $N(E)$ affects α ; and considers other experimental evidence for fc and why cross-linking of the filaments is unimportant for $n < 2n_c$.

The Boltzmann conductivity $\sigma_B = n_i e^2 \tau(E_F)/m^*$ yields $\alpha = 1/2$ when the scattering is dominated by II*S*. This approach uses charge neutrality $(n_i = N_i, n_i)$ the density of itinerant carriers for $E > E_c$, N_i the density of ionized impurities), the two-component model $[n_i +$ $n_{\text{loc}} = n$, n_{loc} is the density of localized electrons (holes) with $E \le E_c$ where E_c is the mobility edge, and the Friedel sum rule. The usual Boltzmann result $\sigma_B \propto$ $(e^2/h)k_F^2\ell$ ($\ell \equiv$ mean-free path) for $k_F \propto [2m^*(E_F E_c$)^{1/2} $\propto (n/n_c - 1)^{1/2}$ yields $\sigma_B \propto (n/n_c - 1)^{3/2}$ for $\tau(E_F)$ ~ const, which is close to the $d=3$ percolation (pc) prediction. This changes when II*S* is the source of $\tau(E_F)$. Use of $1/\tau(E_F) = N_i v_F \langle \sigma \rangle$ [the cross section $\langle \sigma \rangle = (4\pi/k_F^2) \times \sum_{\ell=0}^{F} (\ell+1) \sin^2(\delta_\ell - \delta_{\ell+1})$ and the phase shifts δ_{ℓ} are evaluated at E_F] yields $\sigma_B \propto$ $(e^2/h)k_F/\lambda_{i,h}$ where $\lambda_{i,h}(E_F) = \sum_{\ell=0}^{n}(\ell+1)\sin^2(\delta_\ell \delta_{\ell+1}$) is slowly varying with *n* leaving $\sigma_B \propto k_F \propto$ $(n/n_c - 1)^{1/2}$ in agreement with experiment. This result giving $\alpha = 1/2$ is independent of the form of $N(E)$ for $E > E_c$, which is at odds with Phillip's discussion.

Some have argued k_F cannot go to zero as $n \rightarrow n_{c+}$ ignoring the fact that k_F depends only on n_i and not on the total dopant density *n*. $n_i(T = 0) = \int_{E_c}^{E_F} N(E) dE$ [$N(E) =$ $a_d(E - E_c)^{d/2-1}$] giving

$$
n_i(T=0) = (2a_d/d)(E_F - E_c)^{d/2} \propto (n/n_c - 1)^{d/2}.
$$
 (1)

Equation (1) is consistent only with $d = 1$ fc for $\alpha = 1/2$. For $\sigma_B = n_i e \mu$ and $\alpha = 1/2$ any $d > 1$ would lead to a nonsensical diverging mobility [3] $\mu(n)$ as $n \rightarrow n_{c+}$. It is also apparent $\tau(E_F)$ is nearly constant with *n* for $N_i \propto$ $(n/n_c - 1)^{1/2}$ which results from the charge neutrality condition $n_i = N_i$. If $\alpha = 3/2$ then for a constant $\tau(E_F)$ σ_B yields $n_i \propto (n/n_c - 1)^{3/2}$ for $d = 3$, but $n_i = N_i$ is no longer satisfied. Phillips mentions tunneling where the conductance $G(V)$ is measured versus the bias *V*. $G(V)$ is proportional to a DOS $N(E)$ but it differs from the $N(E)$ above because tunneling measures $N(E - E_F)$. Massey and Lee [4] measured tunneling into Si:B finding $G(V) \propto$

V^{1/2} for $n \ge 1.03n_c$ leading to $N(E - E_F) \propto (E - E_F)^{1/2}$, however this DOS is not relevant for $n_i(T = 0)$ and is not relevant to the exponent $\alpha = 1/2$ for $\sigma(n, T \rightarrow 0)$. The specific heat measures yet another DOS which varies smoothly thru n_c .

What evidence exists for a nearly constant $\tau(E_F)$ for $n_c < n < 2n_c$? The diffusivity $D(n) = v_F^2 \tau(E_F)/d$ $(\hbar/dm^*)k_F\ell$ has been shown [2] to scale as $(n/n_c - 1)^t$ with $t \sim 1$ from the *n* dependence of the *ee* interaction correction [5] $\delta \sigma_D(n, T) = m(n) T^{1/2} [m(n) \propto D(n)^{-1/2}]$ in the diffusive regime $k_F \ell < 1$ and from the Einstein relation $(kT \ll E_F - E_c)$ eD = $2/3(E_F - E_c) \mu(n)$. This result suggests $\mu(n)$ does not scale and is slowly varying. A constant m^* then implies $\tau(E_F) \sim$ const for $n_c \leq n \leq$ $2n_c$. Moreover, the Einstein relation $\sigma = e^2(\partial n/\partial \mu)D$ leads to $\partial n/\partial \mu = N(E) \propto (E/E_c - 1)^{-1/2}$, which is consistent with $d = 1$ fc. New data [6] suggest the transverse dielectric response ε_t scales as $(n/n_c - 1)^{0.5}$ for $1.05n_c <$ $n < 1.2n_c$. The Drude model for $\omega \tau \ll 1$ ($\varepsilon_t =$ $\varepsilon_h - 4\pi\sigma_{DC}\tau$) suggests $\tau(n)$ is slowly varying. In zero magnetic field the evidence suggests the drift mobility is nearly constant just above n_c . Phillips mentions the branching of the $d = 1$ filaments as Si:P reverts to $d = 3$ behavior for larger *n*. In the diffusive regime $k_F \ell <$ 1 $\ell(n)$ scales to zero as $(n/n_c - 1)^{1/2}$ and $\ell(n) < d(n)$ $\lambda_{dB}(n)$ where $d(n)$ is the mean spacing of the donors. $\sigma(n, T \to 0) \propto \lambda_{dB}^{-1}$ ($\lambda_{dB} \equiv$ deBroglie wavelength). The inequality argues against coherent conduction, but suggests why fc is possible up to nearly $2n_c$.

Cohen and Jortner [7] suggested, based on pc theory, conducting metallic channels near n_c . The data showing $\alpha = 1/2$, much different than the $d = 3$ prediction of 1.6, led us away from the pc theory. Today there is substantial evidence for Si:P and Si:As supporting $d = 1$ fc.

T. G. Castner

Department of Physics and Applied Physics University of Massachusetts Lowell Lowell, Massachusetts 01854

Received 1 July 2002; published 6 February 2003 DOI: 10.1103/PhysRevLett.90.059703 PACS numbers: 71.30.+h, 71.10.Hf, 74.72.–h

- [1] J. C. Phillips, Phys. Rev. Lett. **88**, 216401 (2002).
- [2] T. G. Castner, Phys. Rev. Lett. **84**, 1539 (2000).
- [3] M. H. Cohen *et al.*, Phys. Rev. B **30**, 4493 (1984).
- [4] J. G. Massey and M. Lee, Phys. Rev. Lett. **77**, 3399 (1996).
- [5] B. L. Altshuler and A. G. Aronov, Zh. Eksp. Teor. Fiz. **77**, 2028 (1979) [JETP **50**, 968 (1979)].
- [6] K. J. Song and T. G. Castner, Bull. Am. Phys. Soc. **47**, 296 (2002).
- [7] M. H. Cohen and J. Jortner, Phys. Rev. Lett. **30**, 699 (1973).