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We prove that it is possible to remotely prepare an ensemble of noncommuting mixed states using
communication equal to the Holevo information for this ensemble. This remote preparation scheme may
be used to convert between different ensembles of mixed states in an asymptotically lossless way,
analogous to concentration and dilution for entanglement.
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We denote this by the ensemble E � fpi; j�iig. The state
j�ii has Schmidt decomposition

is equal to 1, so the average fidelity must be at least
1� 1=�d. Therefore, in the limit of large �d, the
In classical information theory one of the central prob-
lems is that of coding. From Shannon’s noiseless coding
theorem [1], if message i is given with probability pi, then
a sequence of messages may be compressed to an average
number of bits per message equal to the Shannon entropy
H � �

P
i pilog2pi. This result means that classical com-

munication of H bits per message is sufficient to recon-
struct the sequence of messages; conversely H bits of
communication per message may be obtained. Thus the
Shannon entropy may be given a definite interpretation as
the classical information per message. Here we show that,
in the quantum case where density �i is given with
probability pi, it is possible to give a similar interpreta-
tion to the Holevo information. The Holevo information
is given by S�

P
i pi�i� �

P
i piS��i�, where S��� �

�Tr��log2�� is the von Neumann entropy. It has previ-
ously been shown [2–4] that it is possible to perform
classical communication equal to the Holevo information.
We show that it is possible to effectively reverse this
process and remotely prepare these states using commu-
nication equal to the Holevo information. This result
means that it is possible to convert from ensembles of
mixed states to classical information and back again in an
asymptotically lossless way, analogous to concentration
and dilution of entanglement [5].

In remote state preparation [6–10], Alice (A) wishes to
prepare state �i with probability pi in the laboratory of
Bob (B). Because this ensemble of mixed states E �
fpi; �ig may be used to perform communication equal to
its Holevo information [3,4], the Holevo information
provides a lower bound to the communication required
for remote state preparation [8]. The problem of remote
state preparation at this lower bound has hitherto been
solved only for the special case that all densities to be
prepared commute [11].

It is instructive to first summarize a nonoptimal
scheme for preparing a single state from Ref. [8]. In order
to approach this problem, it is convenient to consider
preparation of a pure state j�ii shared between Alice
and Bob, such that Bob’s reduced density matrix is �i.
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j�ii �
X
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j
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Both modes are of dimension d, and D � f1; . . . ; dg.
Preparing this state is equivalent to remotely preparing
the mixed state �i �

P
j2D 	

j
i j�

j
i iBh�

j
i j.

In order to remotely prepare �i, Alice consumes en-
tanglement and performs classical communication to
Bob. Via local operations on Alice’s side, any maximally
entangled state may be brought to the form

j
ii � �1=
���
d

p
�
X
j2D

j’ji iAj�
j
i iB: (2)

Alice then performs a measurement described by a posi-
tive operator-valued measure (POVM) with two ele-
ments, �1

i �
1
�i

P
j2D 	

j
i j’

j
i iAh’

j
i j and �0

i � 1 ��1
i ,

where �i � maxjf	
j
i g. If the measurement result is 1,

the resulting (unnormalized) state is

�
�������
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���������
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�
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Normalization gives the state Alice wished to prepare,
j�ii. This result occurs with probability 1=��id�. The
state resulting from a measurement result of 0 is not
usable, and this measurement result counts as a failure.

The preparation of the state therefore requires the
classical communication of the number of the measure-
ment result that is a success. Let us assume that the
measurement is performed a maximum of M times,
where M is the smallest integer not less than �d ln��d�,
for � � maxif�ig. If there is a success, then the number of
the success is communicated; otherwise zero is commu-
nicated. As there are no more than M 1 alternative
messages to communicate, the number of bits required
is log��d� O�loglog��d��. Throughout this Letter we
denote logarithms to base 2 by log and logarithms to base
e by ln.

The probability of all the measurements being failures
is �1� 1=�id�M � 1=�d. If there is a success the fidelity
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communication required is log��d� O�loglog��d��,
and the average fidelity is arbitrarily close to 1.

The state preparation protocol of Ref. [8] does not, in
general, reach the Holevo limit. In order to reach the
Holevo limit, we generalize this state preparation scheme
to jointly prepare a number of states. That is, we prepare
the tensor product of n states j�ui � j�i1i � � � � � j�ini
with probability pu � pi1 � � � � � pin . Here we use the
notation u � �i1; . . . ; in�. This tensor product state has the
Schmidt decomposition

j�ui �
X
J2Dn

������
	Ju

q
j’JuiAj�

J
uiB; (4)

where 	Ju � 	j1i1 � � � � � 	jnin , j’JuiA � j’j1i1 iA � � � � �
j’jnin iA, and j�JuiB � j�j1i1 iB � � � � � j�jnin iB.

We introduce the subspace of j�ui,

Bu � fJ:	Ju < 2�n� �SS���g; (5)

where �SS �
P
i piS��i�. We also use the notation ��� �P

i pi�i, so the Holevo information for the ensemble is
S� ���� � �SS. Given any positive � and �, there exists n2��; ��
such that, for all n > n2��; ��,* X

J2Bu

	Ju

+
� 1� �; (6)

where the expectation value indicates the average over u
with probabilities pu. In Ref. [4], this result is given for
the subspace B0

u � fJ:2�n� �SS�� < 	Ju < 2�n�
�SS���g. The

subspace we use includes additional small values of 	Ju,
which can only increase the sum. Therefore the result (6)
must hold for the subspace Bu.

Now we introduce a POVM with elements

�1
u � 2n�

�SS���
X
J2Bu

	Juj’JuiAh’Juj (7)

and �0
u � 1 ��1

u. As above, a maximally entangled
state shared between Alice and Bob may be brought,
via local operations on Alice’s side, to the form

j
ui �
1

dn=2
X
J2Dn

j’JuiAj�
J
uiB: (8)

Alice performs a measurement described by the above
POVM on this entangled state. After a measurement
which yields the result 1, the resulting unnormalized state
is

�

�������
�1
u

q
� 1�j
ui �

2n�
�SS���=2

dn=2
X
J2Bu

������
	Ju

q
j’JuiAj�

J
uiB: (9)

With normalization the state may be written as

j�0
ui �

1

N

X
J2Bu

������
	Ju

q
j’JuiAj�JuiB; (10)

where N �
��������������������P
J2Bu 	

J
u

q
is a normalization factor. This

state is not exactly equal to the state that was to be
prepared (4); however, the fidelity is
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Fu � jh�uj�
0
uij

2 �
1

N 2

��������
X
J2Bu

	Ju

��������
2

�
X
J2Bu

	Ju: (11)

Using Eq. (6), we find that hFui � 1� �.
The dimension of the space used is dn, and the maxi-

mum 	Ju is no greater than 2�n�
�SS���. Therefore, from the

above discussion for the preparation of a single state, the
state j�0

ui can be prepared with probability of success at
least 1� d�n2n� �SS��� and communication n�logd� �SS 
�� O�logn�. The average fidelity with the state j�ui
must therefore be at least 1� �� d�n2n� �SS���.

The average fidelity of the reduced density matrices in
Bob’s mode must also be at least 1� �� d�n2n� �SS��� due
to the relation [12] F��;�� � maxj i;j�i jh j�ij

2, where �
and � are density matrices and j i and j�i are purifica-
tions of � and �.

We therefore see that the states j�ui, or the correspond-
ing reduced density matrices for Bob, may be prepared
with average fidelity arbitrarily close to 1 and communi-
cation per prepared state arbitrarily close to logd� �SS.
This communication is still larger, in general, than the
Holevo bound of S� ���� � �SS. In order to reach this bound
we combine this protocol with what is effectively
Schumacher compression [13].

Using Schumacher compression, the ensemble of states
to be prepared, E, may be compressed to a space of
dimension 2S� ����. These states may therefore be prepared
in the above way with communication S� ���� � �SS. We now
show that this compression may be applied to the prepa-
ration of entangled states, and with fidelity arbitrarily
close to 1.

In order to apply Schumacher compression, we use a
method similar to that of Lo [14]. Lo shows that, given an
ensemble of density matrices E � fpi; �ig to be trans-
mitted, for any �; � > 0, there exists an n such that the
sequence of density matrices �u � �i1 � � � � � �in may be
compressed to S� ����  � qubits with average ‘‘distortion’’
less than �.

It is straightforward to modify Lo’s derivation so that it
deals with ensembles of entangled states, and the fidelity
is used rather than the distortion. For simplicity we con-
sider preparation of the state

j�ui �
X
J2Dn

������
	Ju

q
j�JuiAj�

J
uiB: (12)

This state may be brought to the form (4) via unitary
operations on Alice’s mode. As explained in Ref. [4], for
all �; � > 0 there is an n1��; �� such that, for all n >
n1��; ��, Tr� ����nP� > 1� �, where P is a projector onto a
space of dimension 2n�S� ������. We denote this space by �
and write j�Jui in the form

j�Jui �  JujlJui  "JujmJ
ui; (13)

where  Ju; "Ju � 0, � Ju�2  �"Ju�2 � 1, and the states jlJui
and jmJ

ui are in the spaces � and �?, respectively.
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Now we replace each state (12) with

j ~��ui �
X
J2Dn

������
	Ju

q
� Ju�2jlJuiAjlJuiB Bujl0uiAjl0uiB: (14)

������������q
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The state jl0ui may be chosen arbitrarily. The value of the
coefficient Bu is chosen such that Buh�ujl

0
uiAjl

0
uiB is a

positive real number and normalization is preserved. We
find that
h�uj ~��ui �
X
J;J0
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u � 
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The average fidelity is therefore

F �
X
u

pu

��������1� 2
X
J

	Ju�"Ju�2
��������

2

�
X
u

pu

"
1� 4

X
J

	Ju�"Ju�2
#

� 1� 4�: (16)

In the last line we have used Tr� ����nP� > 1� �.
In addition to n > n1��; ��, we take n > n2��; �� and
n > 1=�, so the Schmidt coefficients for j�ui satisfy
Eq. (6). Now the modified states j ~��ui have the Schmidt

decompositions j ~��ui �
P
J2Dn

������
~		Ju

q
j~��JuiAj~��

J
uiB. We intro-

duce the subspace

~BBu � fJ:~		Ju < 2�n�
�SS�2��g: (17)

Now we may place limits on the sum over the ~		Ju in the
following way:
X
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u
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u
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u jh�J
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u j~��Juij
2

� 1� Tr�~PP�~��u � �u�� �
X
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J02Dn

	J
0

u jh�J
0

u j~��Juij
2: (18)

Here ~PP is the projector
P
J2~BB?

u
j~��Juih~��

J
uj, ~��u is Bob’s reduced density operator for state j ~��ui and ~BB?

u � Dnn~BBu. Using
results from Ref. [15] we have the inequalities

Tr�~PP�~��u � �u�� � D�~��u; �u� �
�����������������������������
1� F�~��u; �u�

q
�

��������������������������������������
1� F�j ~��ui; j�ui�

q
; (19)

where D�~��u; �u� �
1
2 Trj~��u � �uj is the trace distance. Note that the fidelity defined in Ref. [15] is the square root of the

fidelity defined here. The third term on the right-hand side of Eq. (18) may be evaluated asX
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Combining this with Eq. (18) gives

X
J2~BBu

~		Ju � 1�
�������������������������������������
1�F�j ~��ui; j�ui�

q
�
1

2

X
J2~BB?

u

~		Ju�
X
J2B?

u

	Ju

� 1� 2
�������������������������������������
1�F�j ~��ui; j�ui�

q
� 2

X
J2B?

u

	Ju: (21)

Determining the expectation value over u gives* X
J2~BBu

~		Ju

+
� 1� 4

���
�

p
� 2�: (22)

The dimension of the space used is 2n�S� ������, and the
maximum ~		Ju is no larger than 2�n�

�SS�2��. Therefore it is
possible to remotely prepare the state j ~��ui with classical
communication n�S� ���� � �SS  3�� O�logn� bits and
probability of success at least 1� 2�n�S� �����

�SS3��.
Because h

P
J2~BBu

~		Jui � 1� 4
���
�

p
� 2�, the average fidel-

ity for a success is at least 1� 4
���
�

p
� 2�. The average

fidelity including failures must be at least 1� 4
���
�

p
�

2�� 2�n�S� �����
�SS3��.

Because the average fidelity between the states j ~��ui
and j�ui is at least 1� 4�, it is easy to see from the
triangle inequality for fidelities that the states j�ui may
be prepared with average fidelity arbitrarily close to 1.
Therefore we see that the states j�ui may be prepared
with fidelity arbitrarily close to 1 and communication per
057901-3



TABLE I. Three analogous processes for classical communication vs entanglement. In
boldface is shown the optimal remote state preparation discussed in this Letter, as well as
the conversion between ensembles, discussed in Ref. [16], for which optimal remote state
preparation is required.

Classical communication Entanglement

Communication equal to the Holevo information Entanglement concentration
Optimal remote state preparation Entanglement dilution

Conversion between ensembles Conversion between entangled states
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prepared state arbitrarily close to the Holevo information
S� ���� � �SS.

The situation that we have considered, where classical
communication is the resource of interest and entangle-
ment is a free resource, is analogous to that of entangle-
ment concentration and dilution [5], where entanglement
is the resource under consideration and classical commu-
nication is a free resource.

The results of Refs. [2–4] show that it is possible to
perform classical communication equal to the Holevo
information (analogous to entanglement concentration).
Here we have shown that it is possible to remotely prepare
ensembles of mixed states using communication equal
to the Holevo information (analogous to entanglement
dilution).

One consequence of our proof is that it is possible to
convert between multiple copies of different ensembles
with the same total Holevo information [16], in an analo-
gous way as it is possible to convert between different
pure entangled states via entanglement concentration and
dilution. These analogies are summarized in Table I.

An important application of our optimal remote state
preparation scheme is given in Ref. [16]. Reference [16]
shows that, provided it is possible to efficiently prepare
ensembles, the classical communication capacity of a
unitary operation in a single direction is equal to the
maximum by which the operation may increase the
Holevo information of an ensemble. This result is impor-
tant because it makes the evaluation of the communica-
tion capacity of an operation tractable.

It is interesting to speculate whether the same is true
for bidirectional communication. In this case we would
generalize to a bidirectional ensemble fpi; qj; j�ijig,
where i is chosen by Alice and j is chosen by Bob. As
discussed in Refs. [17,18], the same is true in the bidirec-
tional case if it is possible to create bidirectional en-
sembles using as much communication as can be
057901-4
performed using these ensembles. This problem is a topic
for future research.
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Note added.—Bennett et al. [16] refer to a private
communication from P.W. Shor claiming a proof similar
to that shown here for optimal remote state preparation.
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