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Irreversibility and Polymer Adsorption
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Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-
surface bonding. We present a theory of the resultant nonequilibrium layers. While the density profile
and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound
inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The
contact fractions f follow a broad distribution, P�f� � f�4=5, in rather close agreement with strong
physisorption experiments [H. M. Schneider et al., Langmuir 12, 994 (1996)].
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FIG. 1. (a) Final irreversible layer structure. Chains high-
lighted in bold: One belongs to the inner flattened layer (!N
surface contacts) and the other to the outer layer (fN � N
contacts, loop size s � ncont=f). (b) Late stage chain adsorption
as surface approaches saturation and free supersites (clusters of
ncont empty sites) become dilute. Chains cannot completely zip
down. The minimum loop size s just connects two nearest
the strongest and most enduring interfaces possible, and neighbor supersites separated by lsep, i.e., as3=5 � lsep.
The validity of the laws of equilibrium statistical me-
chanics hinges on ergodicity, the ability of a system to
freely explore its phase space [1]. Many real processes,
however, involve irreversible microscopic events such as
strong physical or chemical bonding which invalidate
ergodicity. Equilibrium then becomes inaccessible and
Boltzmann’s entropy hypothesis is no longer applicable
to calculate observables. Instead, the kinetics must be
followed from their very beginning: The accessible re-
gion of phase space is progressively diminished as suc-
cessive irreversible events freeze in an ever-increasing
number of constraints. The state of the system at some
time depends on the pocket of phase space to which it has
become confined.

The adsorption of high molecular weight polymers
onto surfaces by its very nature frequently involves
this kind of irreversibility (see Fig. 1). When an at-
tractive surface contacts even a very dilute polymer solu-
tion, there is a powerful tendency for dense polymer
layers to develop [2,3] because sticking energies per
chain increase in proportion to the number of monomer
units, N. This effect is exploited in many technolo-
gies such as coating, lubrication, and adhesion. When
the monomer sticking advantage � exceeds kBT, avail-
able experimental evidence indicates that relaxation
times become so large that the physisorption processes
are effectively irreversible [4]. This is a common situa-
tion. Many polymer species attach through strong hydro-
gen bonds [5] (� * 4kBT) to silicon, glass, or metal
surfaces in their naturally oxidized states [4], while
DNA and proteins adhere tenaciously to a large va-
riety of materials through hydrogen bonds, bare charge
interactions, or hydrophobic forces [6]. In such situa-
tions, layer structure is no longer determined by the
laws of equilibrium statistical mechanics. The extreme
example arises in chemisorption [7,8] where covalent
surface-polymer bonds develop irreversibly as in applica-
tions such as polymer-fiber welding in fiber-reinforced
thermoplastics and colloid stabilization by chemical
grafting of polymers [9]. Generally, applications prefer
0031-9007=03=90(5)=056103(4)$20.00 
irreversible effects are probably the rule rather than the
exception.

Our aim in this Letter is to understand the effect of
irreversibility on the structure of adsorbed polymer layers
(see Fig. 1). Polymer adsorption phenomena are a major
focus of polymer science, and though a few theoretical
and numerical works have addressed irreversibility
[8,10,11], the reversible case and the equilibrium layers
which result are far better understood [2,3]. Theory [3],
consistent with a number of experiments [12], predicts
each adsorbed chain in the equilibrium layer has sequen-
ces of surface-bound monomers (trains) interspersed with
portions extending away from the surface (tails and loops
of size s). For good solvents, the loop distribution��s� �
s�11=5 and net layer density profile c�z� � z�4=3 are uni-
versal. Equilibrium and ergodicity imply every chain is
statistically identical. For example, for large N the frac-
tion f of units which are surface bound is the same for all
chains to within small fluctuations and is no different to
the overall bound fraction, f � �bound=�. Here � is the
total adsorbed polymer mass per unit area and �bound the
surface-bound part.

How are these universal features modified when the
adsorption is irreversible? This question was explored in a
series of ingenious experiments by the workers of Ref. [4],
who monitored polymethylmethacrylate (PMMA)
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adsorption from a dilute solution onto oxidized silicon via
hydrogen bonding with � � 4kBT. Measuring infrared
absorption and dichroism, they monitored both ��t� and
�bound�t� as they evolved in time and showed that early
arriving chains had much higher f values than late ar-
rivers, and these f values were frozen in forever. They
modeled [4] this in terms of a picture where early arrivers
lie flat and late arrivers, having fewer available surface
spots to adsorb onto, are extended. The experimental f
values of the asymptotic layer followed a broad distribu-
tion, shown in Fig. 2(b). This succinctly quantifies the
essential nonergodic characteristic of these nonequili-
brium layers: There are now infinitely many classes of
chains, each class with its own particular statistics.

In the following, an initially empty surface contacting
a dilute polymer solution with good solvent is considered.
We will calculate the kinetics of layer formation, �bound�t�
and ��t�, and the distributions of f values and loop sizes
in the evolving and final layer. The two cases of irrevers-
ible physisorption and chemisorption must be carefully
distinguished. Define Q as the ‘‘reaction’’ rate between a
monomer and the surface, given this monomer contacts
the surface (see Fig. 3). For physisorption, the attachment
of a monomer is virtually instantaneous on reaching the
surface so the effective value is diffusion limited, Q �
1=ta � 1010 s�1 typically, where ta is monomer relaxa-
tion time. Chemisorption processes are much slower, with
typical values [13] 10�2 & Q & 102 s�1. Consider a chain
which, having diffused from bulk to surface, has just
made its first attachment, i.e., just one monomer is irre-
versibly bonded to the surface (see Fig. 3). We first treat
the case of chemisorption, where the subsequent attach-
ment of the remaining monomers is a process lasting
seconds to hours and is thus experimentally accessible
(all N monomers are assumed functionalized).

1. Early stages: single chain adsorption and surface
saturation.—How does this chain adsorb down onto the
surface? This depends on the exponent � governing the
surface reaction rate k�s� for the sth monomer measured
from the initial graft point (see Fig. 3)
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FIG. 2 (color online). (a) Predicted adsorbed polymer mass �
versus surface-bound part �bound. For chemisorption, �bound �
�8=3 initially. (b) Frequency histograms for fraction of bound
mass, f. Experiment (grey) from Ref. [4]. Theory (empty),
from predicted distribution P�f� � f�4=5 with fmax < f & !,
where values for fmax � 0:9 and ! � 0:47 were taken from
Ref. [4].

056103-2
k�s� � QZsurf�s; N�=Zsurf�N� � Q=s�; �s� N�: (1)

Here, Zsurf�N� and Zsurf�s; N� are the chain partition
functions given one and two surface attachments, respec-
tively. Slow chemisorption allows sufficient time for
chains to explore all configurations given the current
constraints frozen in by earlier reactions. Equation (1)
states the reaction rate is proportional to the fraction of
the grafted chain’s configurations for which the sth mono-
mer contacts the surface [8]. Now, in cases where � > 2,
the total reaction rate Rtotal �

R
N
1 dsk�s� is dominated

by s of order unity, i.e., monomers near the first attached
monomer will attach next. Thus, the chain zips down
from the initial graft point. In contrast, for systems where
� < 1, the upper limit dominates Rtotal, i.e., a distant
monomer will react next; this implies a much more
homogeneous chain collapse mechanism (see Fig. 3).

The present situation is a self-avoiding polymer at a
repulsive wall (we consider pure chemisorption, i.e., we
assume a free energy advantage for solvent to contact the
wall). It turns out this case is intermediate between zip-
ping and collapse. By relating � to other polymer expo-
nents at hard walls [14], we obtained the exact relation,

� � 1� �; (2)

where � � 3=5 is the Flory exponent [14] determining the
polymer bulk coil size RF � aN� in good solvent (a is
monomer size). Thus, 1< �< 2 and Rtotal is dominated
by its lower integration limit. We call this case acceler-
ated zipping (see Fig. 3). Zipping from the original graft
point is accompanied by the occasional grafting of a
distant monomer producing a loop of size s, for instance.
This occurs after time �s � 1=

R
N
s ds

0k�s0� � Q�1s3=5.
Each such new graft point nucleates further zipping,
enhancing the effective zipping speed. Hence, the entire
chain adsorbs in a time tadsorb � �N � Q�1N3=5, since by
this time even the biggest loops have come down. Note
this is much less than the pure zipping time � Q�1N.
Thus, pure zipping must have been short circuited by
large loop adsorption events before it could have com-
pleted its course.
FIG. 3. Chain adsorption commences with formation of an
initial monomer-surface bond. For chemisorption, the reaction
rate thereafter for the sth monomer from this graft point is
k�s� � s��. Three modes of subsequent chain adsorption are
theoretically possible: zipping (� > 2); accelerated zipping,
where occasional big loops nucleate new zipping centers (1<
�< 2); and uniform collapse (� < 1). Chemisorption from
dilute solution is accelerated zipping (� � 8=5).
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During this accelerated zipping down, a characteristic
(unnormalized) loop distribution �t�s� develops and the
number of surface-bound monomers �bound�t� grows from
1 to orderN. We calculated these quantities by solving the
detailed loop kinetics [15]. These are rather complex, and
here we present more accessible scaling arguments which
reproduce the same results. Let us postulate that after
time t the only relevant loop scale is the largest to have
come down, smax � �Qt�5=3, i.e., �t�s� � �smax=s�

�=smax
for s� smax. Assuming � > 1, the total number of loops
L�t� � s��1max is dominated by small loops of order unity.
Writing �bound�t� � N�t=�N� , we demand this be inde-
pendent of N for t� �N (imagine sending the chain size
to infinity; this would not affect the accelerated zipping
propagating outwards from the initial graft point). This
determines  � 5=3. Finally, since there are L�t� nucleat-
ing points for further zipping, d�bound=dt� L, i.e.,
�bound � Lt which fixes � � 7=5.

We now sum over all chains which attached up to time
t. The entropic disadvantage to touch the surface reduces
the monomer volume fraction at the surface from the far
field bulk value !, !surf � r!, where the ratio of surface
to bulk chain partition functions r 
 Zsurf�N�=Zbulk�N� �
1=N was calculated in Ref. [14]. Then with [16] a2d�=
dt � QN!surf and �bound � �bound��=N�, we have

��t�a2 � !Qt; �bound�t�a
2 � !N3=5�t=�N�

8=3; (3)

describing the early chemisorption layer for t < tadsorb �
Q�1N3=5. The loop structure of the partially collapsed
chains is �t�s� � s�7=5 with maximum size smax �
�Qt�5=3. This first phase may be long lived; e.g., forQ�1 �
1 s, N � 103 then �N � 1 min. This becomes many hours
for smaller Q values which are common.

By time tadsorb, zipping is complete and each chain is
completely flattened onto the surface with the fraction of
adsorbed monomers f � !. The species-dependent con-
stant ! is of order unity and reflects steric constraints
preventing every monomer from actually touching the
surface. In practice, we expect broadening of f values
about ! due to strong fluctuations, typical of multiplica-
tive random processes characterizing irreversibility. For
longer times, each new chain zips down and �bound�t� �
!��t� with � given by Eq. (3). This proceeds until tchemsat �
1=�Q!� when the surface is virtually saturated with a
near monolayer of flattened chains [17].

Consider now physisorption in its early stages. After
attachment of its first monomer, the collapse of a single
chain into a flattened structure now occurs as rapidly as
monomers can diffuse a distance of order RF, possibly
accelerated by the attachments themselves. Thus, we ex-
pect the collapse time [11] to be at least as small as the
bulk coil relaxation time �bulk (of the order of micro-
seconds). Hence, the collapse itself is probably experi-
mentally unobservable, at least with the techniques of
Ref. [4]. What is important is that in dilute solutions
chains collapse into flattened configurations without
hindrance from others. Moreover, we find that the proba-
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bility a chain arriving from the bulk makes at least one
bond before diffusing away is essentially unity even for
a nearly saturated surface. It follows that the attach-
ment of chains is diffusion controlled for essentially all
times, a2��t� � �!=a��Dt�1=2, where D is the center of
gravity diffusivity. As for chemisorption, �bound � !�
and adsorption produces a virtual monolayer of flat-
tened chains. Surface saturation effects onset after time
tphyssat � �bulk�!

�=!�2N2=5.
2. Late stages: the tenuously attached outer layer.—

Both chemisorption and physisorption processes fill the
surface with completely collapsed chains, albeit in very
different time scales tchemsat and tphyssat . By this stage, the
distribution of surface-bound fractions is sharply peaked
at f � !. However, as saturation is approached, free sur-
face sites become scarce and late-arriving chains can no
longer zip down completely. Suppose each chain-surface
adhesion point consists in ncont attached monomers. The
precise value of ncont is sterically determined and is ex-
pected to be strongly species dependent. Then the surface
density of free ‘‘supersites’’ (unoccupied surface patches
large enough to accommodate ncont monomers) is $super �
 �bound=ncont, where  �bound 
 �1bound � �bound is the
density of available surface sites and �1bound is the asymp-
totic density of bound monomers. Now as the surface
approaches saturation so the density of supersites be-
comes small, $super � 1=�nconta2�, and their mean sepa-

ration lsep � $�1=2
super becomes so large that a late-arriving

chain cannot find contiguous supersites to complete its
accelerated zipping down. The minimum loop size s
which can come down is that just large enough to connect
two free supersites, i.e., as3=5 � lsep whence s �
�ncont=a2 �bound�5=6. Thus, the final adsorbed state of
chains arriving at this stage [see Fig. 1(b)] consists of
trains of ncont monomers separated by loops of order s
units. For these chains @ �bound=@ � � f � ncont=s for
large s, where  � is the deviation from the asymptotic
coverage �1. Integrating this process up to saturation,

a2 �bound � ncont�a2 �=6�6; P�f� � Af�4=5; (4)

where f� 1 and A is a constant of order unity [18].
Adding this broad distribution of f values to the peak
centered at f � ! from the early stages gives the total
distribution, shown in Fig. 2(b). It agrees rather closely
with the experimental one of Ref. [4] shown in the same
figure. The predicted �bound��� profile [see Fig. 2(a)] is
also very close to the measured profile [4].

Equation (4) describes a tenuously attached outer layer
(small f values) formed by late-arriving chains, adding to
the dense flattened layer formed at earlier times. The loop
distribution of this diffuse outer layer is obtained from
s��s�ds=�1 � P�f�df, whence

��s� � a�2s�11=5; c�z� � z�4=3; (5)

where the density profile followed from c � �sds=dz
evaluated at z � as3=5.
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Finally, the kinetics of the total and bound coverages
during the late stages are modified by saturation effects.
For chemisorption, the rate of attachment is directly
proportional to the density of available surface sites, _�� �
 �bound � � ��6 so  �� t�1=5 and  �bound � t�6=5. In
the physisorption case as discussed, diffusion control al-
ways pertains, �� t1=2, and thus the bound fraction satu-
rates as  �bound � �1� const
 t=tphyssat �6.

In conclusion, we found that irreversible adsorption of
polymer chains leads to final nonequilibrium layers ex-
hibiting both similarities and profound differences com-
pared to their equilibrium counterparts. The layer is a
sum of a surface monolayer plus a diffuse outer part of
thickness of the order of the bulk coil size with density
profile c�z� � z�4=3 and loop size distribution ��s� �
s�11=5. Interestingly, these features are identical to those
predicted for equilibrium layers, including the precise
exponent values. Prefactors are different, however, and
we anticipate different values for physisorption and
chemisorption. To determine these necessitates account-
ing for topological constraints and fluctuations in empty
surface site densities and other quantities, effects absent
from our model. Note that, although we did not explicitly
treat excluded volume interactions between an adsorbing
chain and those previously adsorbed, we expect these to
be unimportant because an empty site is correlated with a
reduced surface loop density at that location.

What is very different about irreversible layers is that
individual chains in the layer are not statistically identi-
cal: A given chain either belongs to the surface-bound
part and has order N surface contacts, or else the diffuse
outer part. In the latter case, the number of contacts, fN,
is generally much less than N and its loop distribution is
almost monodisperse with loop size s� 1=f. In equilib-
rium layers, there is just one class of chain; parts of each
chain lie bound to the surface, other parts extend into the
outer layer and its loop distribution is the same as the
layer’s. In contrast, for irreversible layers there are an
infinite number of classes, each with its own f value.
The weighting for different values is universal, P�f� �
f�4=5 for small f. Practically, these differences have
important implications for the physical properties of
irreversible layers; for example, the outer layer is much
more fragile than the protected inner flattened layer.
From a fundamental point of view, these systems provide
a measurable example of how irreversible events progres-
sively diminish the available phase space volume and
modify the entropy algorithm. For an equilibrium layer
with � > kT, this gives [3] F � Ftrans � Fosm � Ftrain for
the free energy. Here, Ftrans � �kBT

R
ds��s� ln�a2��s��

derives from loop translational entropy, Ftrain � Etrain �
TStrain is the contribution from trains, and Fosm is the
osmotic part due to the solvent-swollen loops in the outer
part of the brush. By comparison, for the nonequilibrium
layers both trains and loops are immobilized on the sur-
face, Ftrans � Strain � 0. The free energy is thus increased,
F � Fosm � Esurf . Its modified structure is expected, for
056103-4
example, to profoundly modify the interaction between
polymer-covered surfaces as compared to the equilibrium
case where the rearrangement of chains on the surfaces
leads to characteristic force profiles [3].

This work was supported by the National Science
Foundation, Grant No. DMR-9816374.
[1] S.-K. Ma, Statistical Mechanics (World Scientific,
Philadelphia, 1985).

[2] G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens,
T. Cosgrove, and B. Vincent, Polymers at Interfaces
(Chapman and Hall, London, 1993).

[3] P. G. de Gennes, Macromolecules 14, 1637 (1981); 15, 492
(1982);A. N. Semenov and J.-F. Joanny, Europhys. Lett.
29, 279 (1995); M. Aubouy, O. Guiselin, and E. Raphael,
Macromolecules 29, 7261 (1996).

[4] H. M. Schneider, P. Frantz, and S. Granick, Langmuir 12,
994 (1996); J. F. Douglas et al., J. Phys. Condens. Matter
9, 7699 (1997).

[5] M. D. Joesten and L. J. Schaad, Hydrogen Bonding
(Dekker, New York, 1974).

[6] V. Hlady and J. Buijs, Curr. Opin. Biotechnol. 7, 72
(1996); P. O. Brown and D. Botstein, Nat. Genet. Suppl.
21, 33 (1999).

[7] T. J. Lenk, V. M. Hallmark, and J. F. Rabolt, Macro-
molecules 26, 1230 (1993); K. Konstadinidis et al.,
Langmuir 8, 1307 (1992).

[8] J. S. Shaffer and A. K. Chakraborty, Macromolecules 26,
1120 (1993).

[9] D. C. Edwards, J. Mater. Sci. 25, 4175 (1990); R. Laible
and K. Hamann, Adv. Colloid Interface Sci. 13, 65
(1980).

[10] W. Barford, R. C. Ball, and C. M. M. Nex, J. Chem. Soc.,
Faraday Trans. 1 82, 3233 (1986); O. Guiselin, Europhys.
Lett. 17, 225 (1992); R. Zajac and A. Chakrabarti, Phys.
Rev. E 52, 6536 (1995).

[11] J. S. Shaffer, Macromolecules 27, 2987 (1994).
[12] L. T. Lee et al., Macromolecules 24, 2518 (1991).
[13] B. O’Shaughnessy, in Theoretical and Mathematical

Models in Polymer Science, edited by A. Grosberg
(Academic, New York, 1998), p. 219; B. O’Shaughnessy
and D. Vavylonis, Macromolecules 32, 1785 (1999).

[14] B. Duplantier, J. Stat. Phys. 54, 581 (1989).
[15] The loop kinetics are _��t �

R
N
s ds

0�t�s
0�k�sjs0� �R

s
0 ds

0�t�s�k�s
0js�, where k�sjs0�, the rate s0 loops gener-

ate two loops s and s0 � s, has the small s behavior of
Eq. (1), k�sjs0� ! k�s� � s�� for s� s0.

[16] Although chain ends are more likely to touch the surface
than a typical interior monomer, we find the latter domi-
nate since there are order N of them.

[17] The surface density of chains at t � tadsorb is ��tadsorb�=
N � �!=!��=R2F, where [3] !� � N�4=5 is the overlap
threshold. Thus, for dilute conditions (!<!�) a chain
zips down flat before others arrive to interfere.

[18] The distribution was obtained from P�f� �
1=��1� �00bound� �0bound�f�, where prime denotes differ-
entiation with respect to  �. The prefactor is A �
6=�5a2�1�ncont�

1=5�.
056103-4


