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Light Transport through the Band-Edge States of Fibonacci Quasicrystals
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The propagation of light in nonperiodic quasicrystals is studied by ultrashort pulse interferometry.
Samples consist of multilayer dielectric structures of the Fibonacci type and are realized from porous
silicon. We observe mode beating and strong pulse stretching in the light transport through these
systems, and a strongly suppressed group velocity for frequencies close to a Fibonacci band gap. A
theoretical description based on transfer matrix theory allows us to interpret the results in terms of

Fibonacci band-edge resonances.
DOI: 10.1103/PhysRevLett.90.055501

The propagation of optical waves in complex dielectric
systems is an intriguing research subject. Complex di-
electrics are dielectric structures in which the refractive
index varies over length scales comparable to the wave-
length of light. In disordered materials light waves
undergo a multiple scattering process and are subject to
unexpected interference effects [1]. One of the first phe-
nomena studied in this context was coherent backscatter-
ing [2] or weak localization of light [3]. Multiple light
scattering in disordered dielectrics shows many similar-
ities with the propagation of electrons in semiconductors,
and various phenomena that are known for electron trans-
port also appear to have their counterpart in optics.
Important examples are the optical Hall effect and opti-
cal magnetoresistance [4], universal conductance fluctua-
tions of light waves [5], optical negative temperature
coefficient resistance [6], and Anderson localization of
light [7]. In the case of Anderson localization, the
propagation of light is even completely dominated by
interference effects and the effective transport comes to
a halt.

On the other extreme, periodic dielectric structures
behave as a crystal for light waves. In periodic structures
the interference is constructive in well-defined propaga-
tion directions, which leads to Bragg scattering and re-
fraction. At high enough refractive index contrast,
propagation is prohibited in any direction within a char-
acteristic range of frequencies. This phenomenon is re-
ferred to as a photonic band gap [8] in analogy with the
electronic band gap in a semiconductor. Whereas the
knowledge on the propagation of light waves in com-
pletely ordered and disordered structures is now rapidly
improving, little is known about the behavior of optical
waves in the huge intermediate regime between total
order and disorder.

Quasicrystals are nonperiodic structures that are con-
structed following a simple deterministic generation rule
[9]. If made from dielectric material, the resulting struc-
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ture has fascinating optical properties. Quasicrystals of
the Fibonacci type, for instance, exhibit an energy spec-
trum that consists of a self-similar Cantor set with zero
Lebesgue measure [10]. The transmission spectrum of
a Fibonacci system also contains forbidden frequency
regions called “pseudo band gaps” similar to the band
gaps of a photonic crystal [11]. In the frequency regime
outside these Fibonacci band gaps, the light waves are
critically localized. In contrast with the fully disordered
(Anderson) localized case, these critically localized
states decay weaker than exponentially, most likely by
a power law, and have a rich self-similar structure [12].
This makes these systems very interesting for light lo-
calization studies, as proposed by Kohmoto er al [13].
The first Fibonacci sequence for electron transport studies
was realized by Merlin et al. [14], which was followed by
several experiments and theoretical studies on electron
propagation in these systems [15]. The experimental work
on light transport in this fascinating class of structures is
limited so far. Important pioneering experiments were
performed by Gellermann et al. [16] who observed self-
similarity in the transmission spectrum of Fibonacci
dielectric multilayers and by Hattori et al.[17] who mea-
sured the Fibonacci dispersion curves.

A Fibonacci quasicrystal is a deterministic aperiodic
structure that is formed by stacking two different com-
pounds A and B according to the Fibonacci generation
scheme: S;,; ={S;_S;} for j =1, with S, = {B} and
S, = {A}. The lower order sequences are S, = {BA}, S; =
{ABA}, S, = {BAABA}, etc. We limit ourselves in this
Letter to one-dimensional structures. The advantage of
1D structures is that their optical properties can be calcu-
lated accurately and that samples can be designed and
realized in any desired configuration. Since one has
control over both layer thickness and refractive index,
in principle any structure from completely ordered
to completely disordered can be realized and studied
experimentally.
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The quasicrystals for our experiments were realized
using porous silicon multilayers. Fibonacci quasicrystals
of up to 233 layers (Fibonacci order j = 12) were ob-
tained using a well-characterized electrochemical disso-
lution procedure [18]. The p*-type doped (0.01 ) - cm)
silicon substrates were etched in a 2:1 solution of ethanol
and aqueous 48 wt % HE Two distinct building blocks (A
and B) were stacked according to the Fibonacci generation
rule. Layer A corresponds to a 157 nm thick layer with
69% porosity and refractive index 1.6. Layer B corre-
sponds to a 105 nm thick layer with 47% porosity and
refractive index 2.2. The total thickness of the 233 layer
sample was 29 um. The chemical etching process intro-
duces a well-known thickness and porosity gradient,
which in our case is about 6%, respectively, 10%, over
the whole sample thickness [18]. (The layer thickness
decreases and the porosity increases with depth.) We
find that the Fibonacci band gap and most band edge
states are robust against this small drift.

To study the transport properties of the Fibonacci band
edge modes we have performed time-resolved transmis-
sion experiments using a fixed Mach-Zehnder interfer-
ometer coupled with a Michelson interferometer to
measure the interferometric cross correlation of the trans-
mitted pulse with a reference pulse. This technique pro-
vides both the amplitude and phase information of the
transmission through the sample. For further details, we
refer to Ref. [19]. As a laser source we used a tunable
parametric oscillator, pumped by a fast (200 fs pulse
duration) Ti:sapphire laser.

In Fig. 1 the experimental transmission spectrum of
a 12th-order Fibonacci sample is shown. The inset shows
three examples of the power spectrum of the incident
laser pulses close to the low-energy band edge of

Fibonacci (N=233) transmission spectrum
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FIG. 1 (color online). Measured transmission spectrum of a
12th order Fibonacci (N = 233) quasicrystal. Around wave
numbers 5000-5500 cm™! the system exhibits a Fibonacci
pseudo gap. The inset shows three examples of the power
spectrum of the incoming laser pulses in the time-resolved
experiment reported in Fig. 2. The spectrum was recorded with
a standard Perkin and Elmer IR absorption spectrometer, and
hence the transmission peaks are broadened due to the angular
spread of the incoming light on the sample and lateral sample
inhomogeneities.
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the Fibonacci pseudogap around wave numbers
5000-5500 cm~!'. The measured pulse envelopes of the
time-resolved transmittance for these three examples are
plotted in Fig. 2. When the incoming pulse is resonant
with one transmission peak, the pulse is significantly
delayed and stretched. This stretching becomes surpris-
ingly strong close to the band edge (e.g., Fig. 2, curve
ITTa). In addition to the delay and stretching, when the
spectrum of the laser pulse overlaps with two adjacent
narrow transmission modes a strongly oscillatory behav-
ior is observed (e.g., Fig. 2 curve Ila). These oscillations
can be interpreted as due to beating between individual
band-edge modes. Indeed the frequency of the oscilla-
tions corresponds to the frequency difference between the
peaks in the transmission spectrum.

The time delay At and the decay constant 7 of the
transmitted pulse are plotted in Fig. 3. The time delay was
calculated from the delay of the center of mass of the
transmitted pulse envelopes relative to the undisturbed
pulse (a pulse that has passed through the underlying
substrate but not through the Fibonacci system). The
decay constant 7 was obtained by an exponential fit to
the pulse decay envelope at long times. Both At and 7
elongate strongly for pulse energies close to the band
edge. The strong pulse delay leads to a group velocity
suppression, as can be seen in Fig. 3(b). The group veloc-
ity reduction obtained in these structures is 3 times larger
than that observed in three-dimensional photonic crystals
made of colloidal polystyrene spheres [20].
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FIG. 2 (color online). Experimental data and calculation of
the transmission through Fibonacci samples at four different
frequencies. Also the undisturbed pulse, which has passed
through only the Si substrate and not the Fibonacci sample,
is plotted for comparison. The time offset corresponding to the
total optical thickness of the sample has been subtracted in all
cases. When the laser pulse is resonant with one band edge state
the transmitted intensity is strongly delayed and stretched.
When two band edge states are excited, mode beating is
observed.
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FIG. 3. (a) Time delay of the center of mass of the trans-
mitted pulse with respect to the undisturbed pulse. (b) Group
velocity with respect to the vacuum group velocity, as derived
from the time delay. (c) Detail of the experimental transmis-
sion spectrum of the 12th order Fibonacci sample. (d) Decay
time of the exponentially decaying transmitted pulse at long
times.

The large group velocity reduction and pulse stretching
that we find experimentally is observed only close to the
band edge of the Fibonacci spectrum. The band edge is
also the region where the periodic-like features (band
gap) of the Fibonacci system go over into its disorder
properties (critically localized states). Inspired by our
experimental results we decided to look in more detail
into the physical nature of these Fibonacci band edge
states.

We calculated the field distribution of the experi-
mentally studied modes in our Fibonacci quasicrystal,
following a standard scattering-states method [21]. The
magnitude of the electric (E) and magnetic (B) fields
at the left interface of a dielectric layer is simply related
to E and B at the right interface of the same layer through
the matrix relation [22]:

Ee\ . (E.\ [ cosé iS\/E,

(5) =4(5) = (iyine cota (5} @
where the indices € and r refer to the left and right
interfaces of the layer, 6 = kgnd is the phase change,
and v is the inverse of the light velocity across the layer
(ko = wave vector in vacuum, n = refractive index, d =
layer thickness). From the continuity requirements of the

electric and magnetic fields, one can construct the trans-
fer matrix M of the whole system by simple matrix multi-
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plication. For the layer thickness d and refractive index n
we take exactly the values of our samples as given before.
The response in the time domain can then be calculated
from the inverse Fourier transformation of the product of
the complex transmission coefficient and the incident
pulse envelope. Taking exactly the experimental inci-
dence pulse envelope (FWHM: 63 cm™!), coherent beat-
ing and pulse stretching are very well reproduced in the
calculation, as can be seen in Fig. 2.

For one-dimensional structures, it is also possible to
compute the electric field distribution inside the sample.
The reflectivity coefficient of the whole sample must be
calculated previously, after which the incident and the
total reflected light can be used as boundary conditions to
compute the field amplitude of all layers inside the struc-
ture. The electric field on the kth interface can be ex-
pressed as

E(zW, @) = {1 + r(@)m) = yoll = r(@)}ml,  (2)
where mg‘) are the elements of the transmission matrix
from the first to the kth interface. The intensity is then
simply the square of the electric field, as plotted in Fig. 4.
The Fibonacci pseudo band gap is clearly visible in
the lower part of the plot. Just above the pseudo band
gap the band edge modes are visible which correspond to
the transmission peaks in the inset of Fig. 1. The insets
show the normalized field intensity distributions for
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FIG. 4 (color). Calculated intensity distribution inside the
Fibonacci quasicrystal sample as used in the experiments.
x axis: layer number; y axis: wave number of the incident light.
This means that any horizontal cut through the graph repre-
sents an intensity distribution at one specific frequency. The
insets show the intensity distributions at several frequencies.
(Horizontal cuts are indicated by black lines in the color
graph.) The input intensity of the electric field has been
normalized to unity. Note that the intensity inside the sample
can become larger than 1, due to internal resonances.
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several frequencies. The incoming field is normalized to
1. The first inset (a) shows the exponentially decaying
intensity of light that is incident in the band gap region,
whereas the other insets (b)—(f) show the intensity des-
tribution in the band edge region when moving away from
the band gap. [Insets (b) and (d) correspond to the first
two transmission maxima, whereas (c) is taken in be-
tween these maxima.] The first and second order band
edge resonances (with only one, respectively, two max-
ima) are suppressed due to the minor drift in layer thick-
ness and porosity.

The resonances of the band edge states are sharp
enough to allow for the occurrence of mode beating
when adjacent modes are excited simultaneously, as ob-
served in the experiments. Figure 4 also illustrates nicely
the field-enhancement effect: close to the band edge the
field inside the sample becomes locally larger than 1. The
distributions that we find in Fig. 4 have a notable simi-
larity to the band edge resonances occurring in photonic
crystals [23] but are less regular. Band edge resonances in
(finite-size) photonic crystals are due to a transient stand-
ing wave that is formed inside the sample and can tem-
porarily store a substantial amount of energy. This is
consistent with a large group velocity reduction and
strong pulse stretching as observed in our experiments.
Since this transient standing wave is formed from reflec-
tion by the sample bounderies, it has the characteristic
intensity distribution of the various harmonics of a stand-
ing wave. Band edge resonances in photonic crystals are
not localized states since their extension scales linearly
with the system size and they do not decay to zero [23]. In
contrast, the Fibonacci band edge resonances will decay
via a power law due to their critically localized nature.

Summarizing, we find that the Fibonacci band edge
states exhibit mode beating, a sizable field enhancement,
and a group velocity reduction that is 3 times larger than
that observed in three-dimensional colloidal photonic
crystals of polystyrene. As in the photonic crystal case
the Fibonacci band edge states exhibit band edge reso-
nances which are, however, critically localized due to the
Fibonacci disorder. Fibonacci systems can provide an
interesting alternative to regular photonic crystals for
the realization of photonic devices, such as optical filters
with a self-similar spectrum and a high wavelength
selectivity in the band edge region. Another interesting
future application of these materials could be realized in
the field of random lasers, where the Fibonacci band edge
resonances could serve as a new type of complex cavity
that provides the feedback for laser action.
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