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Backscattering of an Intense Laser Beam by an Electron

Fei He, Y.Y. Lau, Donald P. Umstadter, and Richard Kowalczyk
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104

(Received 17 June 2002; published 4 February 2003)
055002-1
We present a novel, simple asymptotic expansion for the spectrum of radiation that is backscattered
from a laser by a counterpropagating (or copropagating) electron. The solutions are presented in such a
way that they explicitly show the relative merit of using an intense laser and of an energetic electron
beam in x-ray production in the single particle regime. Simple scaling laws are given.
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laser, and from a low to an ultrahigh energy electron, both
jointly and separately.

2�=�T � n 
 r0� [10,17,20], and Fm is the dimensionless
vector,
Recent advances in tabletop, ultrahigh intensity lasers
have led to significant renewed interest in the classic
problem of Thomson and Compton scattering. An impor-
tant current application of these scattering processes is
the generation of ultrashort-pulse-duration x rays. For
example, electrons with only 100 MeVenergy can upshift
a 1 eV photon to an energy of 50 keV, which is of interest
not only as a coherent probe with atomic-scale spatial
resolution, but also as a medical diagnostic. Several pro-
posals have been made to build a ‘‘gamma-gamma’’
collider for high-energy physics experiments, in which
200-GeV gamma rays are generated by Compton scatter-
ing of 1-eV photons from 250-GeVenergy electron beams.
Colliding such energetic photons to create particles
through the inverse process has advantages over direct
particle collisions because of reduced beamstrahlung and
disruption. The results of numerous experiments [1–6],
theories [7–20], and reviews [21,22] related to these
topics have been published.

In this paper, we revisit the classical theory for the
backscattered radiation from a laser by a counterpropa-
gating electron. While analytic and numeric solutions to
this problem have been obtained many times in the past,
the novel aspects of the present work include a sharp
delineation of the role of the intense laser and of the
electron’s kinetic energy in the production of high har-
monics. For example, we find that the relative shape of the
backscatter spectrum depends only on the laser amplitude
but is independent of the electron energy, that a high
power laser does not necessarily produce high power
radiation or overwhelmingly favorable frequency up-
shift, and that very significant frequency up-shift is
achieved most effectively by the use of an energetic
electron beam. These findings are consistent with some
conventional notions, while contradicting others. They
are based on the closed form solutions of the backscat-
tered spectrum that we obtained for arbitrary laser in-
tensity and arbitrary electron energy (including zero),
together with the simple asymptotic expressions in the
various regimes. Thus, we provide a unifying theme for
this scattering problem from a low to an ultrahigh power
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Consider a linearly polarized electromagnetic wave
whose electric and magnetic fields are given by, respec-
tively, E � xE0 cos�!0t� k0z� and B � yE0 cos�!0t�
k0z� in Gaussian units, where !0 is the laser frequency,
k0 � !0=c, and x; y are the unit vectors. Unless otherwise
stated, we shall normalize time by 1=!0, distance by
1=k0, and velocity by c. In these units, the electric field
strength is measured by the dimensionless parameter,
a � eE0=m!0c. All calculations are done in the lab
frame. Radiation damping is ignored.

The relativistic Lorentz force law, d�
��=dt � a�x�
�� y� cos�t� z�, subject to the general initial conditions
at time t � 0, i.e., x � 0, y � 0, z � zin, �x � �x0, �y �
�y0, and �z � �z0, may be solved parametrically in
terms of � � t� z, the phase of the wave [8–12,17,20].
Here � � ��x; �y; �z� is the electron velocity (in units of
c), 
 � �1� j�j2��1=2, and �0 � ��x0; �y0; �z0� is the
unperturbed velocity of the electron (a � 0 limit).
In the lab frame, the electron motion is periodic with
period T, and the electron’s net displacement over this
period is r0. Both T and r0 depend on the initial phase,
�in � �zin [9,20].

The energy radiated by the electron in the direction of
the unit vector n, per unit solid angle 	 in the far field,
per unit frequency !, is given by (in dimensional form
[23])

d2I
d	d!

�
e2!2

4�2c
jn� F�!�j2; (1)
F�!� �
Z 1

�1
dt��t�ei!	t�n
r�t�=c�

�
X1

m��1

Fm��!�m!1�; (2)

where � is the Dirac delta function. In Eq. (2), the
radiation spectrum is at integer harmonics of the fre-
quency !1, which is related to the laser frequency !0 in
terms of the dimensionless quantities by !1=!0 �
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FIG. 1. Normalized spectral distribution of sm, at frequency
! � m!1. Here sm is normalized with respect to the maximum
value sM, occurring at m � M.
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(3)

Both !1 and Fm depend on !0, a, �in, �0, and n.
We henceforth focus on the special case of backscat-

tered radiation (n � �z) by an electron that has the
following initial conditions: �in � 0, �x0 � 0, �y0 � 0,
and �z0 may be negative (electron counterpropagates
against laser), zero (electron is initially at rest), or posi-
tive (electron copropagates with laser). In this case, one
finds
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2
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(4)

where 
0 � �1� �2
z0�

�1=2. The power, pm (in erg=s),
radiated at the harmonic frequency ! � m!1 per unit
solid angle in the n � �z direction is given by [cf.
Eq. (1)]

pm �
e2m2!2

1

4�2c
jn� Fmj

2 �
A


2
0�1� �z0�

2

�
!1

!0

�
4
sm; (5)

where A � e2!2
0=4�

2c � 0:69	�=�1 �m���2 erg=s, and �
is the laser wavelength. In Eq. (5), we find that sm � 0 for
m � 0;�2;�4; . . . [Figs. 1(a) and 1(b)]. For m �
�1;�3;�5; . . . , one finds from Eqs. (3) and (5) the
closed form solution,
sm��a��2m2	J�m�1�=2�m���J�m�1�=2�m���2 �m�odd�;

(6)

��
a2

2�a2�2�
; (7)

where Jn�x� is the Bessel function of the first kind of order
 . The factor sm appears in Esarey et al. [11]. It also
appears in the quantity ‘‘	JJ�’’ or ‘‘Fm�K�’’ in the FEL/
synchrotron light literature if one replaces a by the
undulator/wiggler parameter K [24–27]. The normalized
distribution of sm is shown in Figs. 1(a)–1(d) for increas-
ing values of a. The maximum values of sm, occurring at
m�M with a value sM, are shown in Fig. 2. It is easy to
show that sm� s�m for all odd integers m.

The electron’s unperturbed velocity enters pm in Eq. (5)
only through the factor �!1=!0�

4=	
0�1� �z0��
2. The

dimensionless quantities sm and � depend only on
the laser intensity, a. In other words, the relative shape
of the backscatter spectrum by a single electron depends
only on the laser intensity and is independent of the
electron’s unperturbed velocity, as shown in Figs. 1 and
2. Thus, the exact solutions (5) and (6) provide an un-
ambiguous separation of the roles of the two drives, the
laser and the electron’s unperturbed velocity, in produc-
ing backscatter radiation.

For a 
 0:3, the m � �1 components contain essen-
tially all backscattered radiation [Fig. 1(a)], and Eqs. (6)
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FIG. 3. (Top) The harmonic number of the laser frequency,
N0, at which maximum backscatter occurs for the special case
�z0 � 0. For nonzero �z0, N � 
2

0�1� �z0�
2N0. (Bottom) The

total backscattered power, PT0, per unit solid angle for the
special case �z0 � 0, and laser wavelength � � 1 &m. For
other values of �z0 and �, PT � PT0


6
0�1� �z0�

6=��=1 &m�2.

 

 

FIG. 2. Numerical values of M (top) and sM (bottom) at
various values of a.
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and (7) give s1 � a2�2 for a2 � 1. For a � 1, sm is
appreciable only for the first few odd numbers of m
[Fig. 1(b)]. For a � 2; sm spreads out to larger values of
m [Figs. 1(c) and 1(d)]. A saddle point calculation gives,
for a2 � 1,

sm � sM�jmj=M�e��jmj�M�=M; (8)

M � 0:32a3; sM � 1:15a4: (9)

The asymptotic formula (8) is shown in Figs. 1(c) and 1(d)
for comparison. The asymptotic formula (9) is shown in
Fig. 2. Once more, the frequency component ! � M!1

contains the highest backscatter power.
In terms of the laser frequency, the frequency compo-

nent ! � N!0 would contain the highest backscattered
power, where N � M!1=!0. Upon using Eq. (4), we
obtain

N �

�
2

2� a2

�

2
0�1� �z0�

2; a 
 1; (10a)

N � 0:64a
2
0�1� �z0�

2; a � 3: (10b)

Equation (10) clearly shows the merit of using an ener-
getic electron beam, over that of using an intense laser, in
the generation of high frequency backscattered radiation.
055002-3
It also shows the familiar Doppler up-shift proportional
to 
2

0 as �z0 approaches �1. The harmonic number of the
laser frequency, N, at which maximum backscattered
power occurs is shown in Fig. 3 (top). Note that N is
linearly proportional to a, instead of a3, for large a [9,20].

The total backscattered power, PT (in ergs=s), per unit
solid angle in the n � �z direction is then given by PT �
�pm where the sum is taken over all odd values of m
[Fig. 1(b)]. The following approximate values of PT are
obtained for small and large values of a,

PT � p�1 � p1 � 2p1 � 13:7a2

6
0�1� �z0�

6

��=1 &m�2
erg=s;

a 
 0:3; (11a)

PT �
1

2

Z 1
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dmpm �

11:1
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erg=s;

a � 3: (11b)
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In writing Eq. (11a), we use the fact that only the m � �1
and �1 components dominate for a < 1 [Fig. 1(a)]. In
writing Eq. (11b), we pretend that the discrete variable m
becomes continuous for a > 3 [Figs. 1(c) and 1(d)], and
we use Eq. (8) to approximate pm [cf. Eq. (5)]. The factor
of 1

2 in front of the integral in Eq. (11b) accounts for
the fact that pm � 0 for all even values of m (i.e., only
odd values of m contribute to PT). The approximate
solutions (11a) and (11b) are shown in Fig. 3 (bottom)
for comparison.

Note the unusual scaling of PT , which is proportional
to 
6

0 according to Eqs. (11a) and (11b) in the highly
relativistic limit �z0 ! �1. Such a rapid increase in
radiated power with the electron energy (
0) is hardly
surprising in the classical theory of radiation of electron
[23]. Note further that Eq. (11b) clearly shows that using
an ultra-intense laser (large a) does not necessarily yield
the brightest backscatter radiation, as it gives the total
backscatter power per unit solid angle.

Our highly idealized model of laser backscatter by a
single electron ignores important effects such as electron
beam emittance, finite beam and laser pulselengths, spec-
tral linewidth and angular distributions, all of which have
been studied extensively for synchrotron light/free elec-
tron laser [24–29]. A great number of these effects can be
directly translated in a generalization of the present
study, as can the collective effects [30]. Likewise, the
asymptotic solutions given in this paper may also be
immediately applied to free electron lasers because sm
and 	JJ� or Fm�K� are basically the same function, as
indicated above.

In conclusion, we have constructed simple scaling laws
for the spectrum of the backscattered radiation of an
electron by an intense laser, according to the classical
theory. These solutions suggest that an intense laser with
a � O�1�, together with a most energetic counterpropa-
gating electron beam, would produce the combined larg-
est frequency up-shift and brightest backscatter power.
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