VOLUME 90, NUMBER 5

PHYSICAL REVIEW LETTERS

week ending
7 FEBRUARY 2003

Reconnection of Colliding Vortex Rings
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We investigate numerically the Navier-Stokes dynamics of reconnecting vortex rings at small
Reynolds number for a variety of configurations. We find that reconnections are dissipative due to
the smoothing of vorticity gradients at reconnection kinks and to the formation of secondary structures
of stretched antiparallel vorticity which transfer kinetic energy to small scales where it is subsequently
dissipated efficiently. In addition, the relaxation of the reconnection kinks excites Kelvin waves which
due to strong damping are of low wave number and affect directly only large scale properties of

the flow.
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In flow phenomena as diverse as quantum [1], magnetic
[2], and incompressible [3] fluids, it is useful to study the
physics of turbulence by modeling the system as a col-
lection of tubular flux loops which in the case of vortical
fields are called vortex filaments. An intrinsic property
of such highly structured systems is their ability to dy-
namically change their topology via reconnection
mechanisms. Does this change in topology affect in
turn properties of fluid turbulence such as intermittency
and scalar mixing (which depend directly on the struc-
ture of the flow) or the dynamics of energy in wave
number space? Or is it the case that reconnection events
are not generic and thus have no direct impact on the
mean properties of turbulent flows? The aim of this Letter
is to address these issues by fully resolving the Navier-
Stokes dynamics of interacting vortex rings for three
simple geometries having great potential for illuminating
the physics of reconnection. Although the flows consid-
ered are not strictly turbulent, the hope is that in a future
structural approach to the problem of turbulence a sig-
nificant part of the flow complexity could be traced back
to the physics of similar vortex interactions.

Incompressible vortex reconnections have an extensive
bibliography (for a review of the work up to 1994, see
[4,5]). In [6,7] reconnections of vortex tubes were con-
sidered with an emphasis on the possibility of singularity
formation as Re — oo. In [8] the strong interactions be-
tween vortex rings were computed with the interest in
developing numerical methods and turbulence models
rather than in focusing on the physics of reconnection.
In [9] it is discussed how a linked vortex configuration
could be achieved starting from an unlinked initial state,
and in [10] it is considered how the mixing of a non-
diffusing passive scalar is affected during vortex ring
collision. The reconnection of two approaching (but not
colliding) vortex rings was studied experimentally in [11]
and theoretically in [12]. This Letter extends these studies
by considering generic vortex configurations and by cap-
turing more features of vortex reconnections in a turbu-
lent flow.
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We solve the Navier-Stokes equations for an unbounded
three-dimensional incompressible viscous flow. We em-
ploy the vorticity formulation:

<%+u'v>w= (Vu) w + Vi, (D

V-u=0, )

where u is the velocity and e is the vorticity. We use a
vortex particle method [13]. In this method, the vorticity
is discretized with Lagrangian elements. These elements
which carry a vector-valued Gaussian distribution of
vorticity are convected and stretched by the local velocity
obtained by the Biot-Savart law. The complexity of the
velocity computation is normally @(N?) with N being the
number of particles; we have used a multipole algorithm
that reduces this complexity to O(Nlog(N)). Viscous
diffusion is handled by the particle strength exchange
scheme.

We calculate the global kinetic energy E and enstrophy
Q) defined as

1
Ezifu-udx, 3)

Q=/w~wdx. 4)

For unbounded flows, the relation between kinetic energy
and enstrophy is

d
—E = —v(d. 5
o v &)

We also compute the evolution of the spectrum of the
kinetic energy E(k) which, in terms of the Fourier trans-
form of vorticity @ = [1/(2m)*?] [ w(r)e™"* dr, is de-
fined as

E(k) =%(2’n’)3 fl & - o"d,, ©)

kl=k
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FIG. 1. Vortex rings in an offset collision: contours of
vorticity; from ¢t = 0 to 2.4, the contour is w = 0.15w!3%; for
t> 24, itis 0 = 0.025 030

where d(), denotes sinf,df,d¢,, the solid angle element
in spherical coordinates. The calculation of the spectrum
requires a double summation over the vortex elements
which results to @(N?) complexity. Because of this, the
calculation of the spectrum is much more costly than the
solution of the Biot-Savart law. Since the number of
particles grows substantially during our simulations,
from around N =5 X 10* at t =0 to 8 X 103 in the
end, our computational resources did not allow us to
compute the spectra for all times.

All calculations were done with the same Reynolds
number: Re =L = 250 where I' is the circulation of one
ring and v is the kinematic viscosity. This small value of
the Re was dictated by the computational cost and the
need for well-resolved reconnection regions. All the
rings have the same initial I". All of our conclusions are
conditioned upon the small value of the Reynolds number,
as well as, on the common initial circulation and should
not be extrapolated uncritically to other settings. The
initial vorticity distribution in the cross section of every
ring is Gaussian with a cutoff

r

e[(*rz)/(21r2)]’ (7
2o

Wy =

where r is the distance to the core center, o is the core
radius, and wy is the azimuthal vorticity. We chose o =
0.05R (where R is the radius of the ring), to ensure that the
rings are still thin when reconnections occur. Our results
were made dimensionless in the following manner: t =
(I't/R?), x = (x'/R), and w = [(R?> 0')/T’], where ¢, x/,
and o’ are dimensional.

We studied three configurations. In the first case
(Fig. 1), the initial rings are placed at a distance of R/4
apart in the z direction, offset by R along the y axis and
they move in opposite directions along the z axis. In the
second case (Fig. 2), two rings of different radii (R and
R/2) and of initial separation R/4 are moving in the same
direction along the z axis, with the center of the small
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FIG. 2. Vortex rings of different radii: contours of vorticity;
from ¢t = 0 to 2.4, the contour is w = 0.15w,’;9(; for t > 2.4, it
is w = 0.050752.
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ring in a collision course with the circumference of the
large one. The small ring has a larger self-induced veloc-
ity and catches up with the large ring. Finally, in the third
case (Fig. 3), the two rings are linked at 90° a ring going
through the other in its center. One is moving in the
positive z direction; the other, in the positive y direction.

All three evolutions lead to ring reconnection
(Fig. 1-3) and have common features. The latter will be
discussed here in the context of the first configuration
observing that the phenomena are the same for the other
two cases. The spectrum at # = 0 (Fig. 4) has the charac-
teristic oscillations of the spectrum of isolated vortex
rings and a cutoff at the scale of ring core radius o =
0.05, £ = 20. Our results (Fig. 1 and 5) suggest that
(approximately) the reconnection starts around ¢t = 0.6
and ends around ¢t = 1.75 with a duration Af, = 1.15.
Specifically, as the rings approach each other, they stretch
and deform near the collision points so that their respec-
tive vorticities become locally antiparallel. The two ends
of this stretching region eventually become reconnection
kinks in which (in the absence of singularities) the strong
vorticity gradients are smoothed out by diffusion. This is
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FIG. 4. Vortex rings in an offset collision: evolution of the
energy spectrum.

also seen in the graphs of the global quantities (Fig. 5)
where the beginning of the reconnection process corre-
sponds to a hump in the graph of () and to a steepening of
the slope of E(¢) between ¢t = 0.6 and r = 1.4. Our calcu-
lation predicts that (due to diffusion) the filament core
radius increases from the value o, = 0.05R initially to
the value o, = 0.12R at the reconnection. Using this
latter value we calculate the viscous time scale t, =
o%/v = 0.36. Scaling the convective ring velocity with
I'/47R we estimate the time needed for a ring to traverse
o, t. =4mwRo, /T = 1.5. These times are of the same
order as At, and so it looks that both viscous and con-
vective phenomena participate in the reconnection
physics. The present relation between ¢, and Az, is differ-
ent from the one in [11] where the viscous scale was
reported to be much larger than the duration of recon-
nection. However, in [11] the Reynolds number was 1600.
The conclusion that the reconnection duration is inversely
proportional to the Reynolds number and thus to the
circulation of the vortices is plausible (also in agreement
with [6,14]), but it is subject to the condition in [11] that
the rings are merely touching themselves rather than
colliding.
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FIG. 5. Vortex rings in an offset collision: kinetic energy and
enstrophy.
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FIG. 6. Vortex rings in an offset collision: contour of vorticity
and vortex lines at = 1.6 and 2.4; the transparent contour is
o = 0.025w!9; the vortex lines in (a) and (b) were chosen to
pass through the vortex core center (the maximum value of w)
at a location away from the reconnection kinks; in (c), a few
neighboring lines are also shown for t = 2.4.

After some time (Fig. 6), we can say that two new rings
are formed. The pairs of filaments between the reconnec-
tion regions are stretched further as the new rings move
apart from each other (r = 1.6 to 5.6). These stretched
vorticity structures are responsible for a continued trans-
fer of energy to the smallest scales until these structures
are dissipated away. This conclusion is supported by the
results of Fig. 4 where it is shown that the high wave
number cutoff of the spectrum becomes a nonexponential
one (although it remains still very steep) and that between
t = 0.8 and 2.4 there is a significant decay of the energy
spectrum for k& < 20 but little change for k > 20. This last
observation indicates that in the small scales of motion an
approximate balance between energy transfer from large
scales due to stretching and local energy dissipation due
to diffusion is attained (temporarily). This conclusion is
also consistent with the vorticity structure shown in Fig. 7
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FIG. 7. Vortex rings in an offset collision: contours of vor-
ticity magnitude in the plane z = 0 from ¢ = 0.8 to 3.2.
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where it is observed that between t = 0.8 and t = 2.4 (the
time of the last spectrum calculation), the vorticity mag-
nitude in the secondary structures (where the global
maximum of vorticity resides) stops increasing and in
fact it decays slightly.

It is conceivable that for Reynolds numbers higher than
250 an intermediate scaling range (that is in between the
k™! and k=7 regimes) could appear with an inertial type
of scaling. It is also expected that with increasing
Reynolds number the hump observed in the global ens-
trophy during the reconnection could become more pro-
nounced and (according to the previous discussion)
shorter in duration.

In conclusion, we studied three generic vortex ring
configurations and we found that in all cases the rings
reconnect. This suggests that reconnection is a common
phenomenon in vortex filament encounters and perhaps
also in turbulent flows. In addition, we observe an inten-
sification of dissipation which is local in time and could
be a mechanism contributing to turbulence intermittency.
A by-product of reconnection is the formation of
stretched structures with antiparallel vorticity which
transfer energy to the smallest scales where it is rapidly
dissipated. Without this energy redistribution in wave
number space the decay of global kinetic energy would
have been slower. This important effect depends directly
on the details of the initial vortex configuration (compare
with experiments in [11]). The observed intensification of
small scale motions hints to an enhancement of small
scale mixing of passive scalars with Sc = 1. The excited
Kelvin waves represent a fast mechanism for energy
transfer, but the small Reynolds number of our calcula-
tions is not suitable for understanding their full impor-
tance. In particular, they are confined to low wave
numbers in opposition to the Kelvin waves observed in
reconnections in quantum fluids [15]. This is because
quantum filaments are inviscid and have a very thin
core (o~ 0.1 nm) so that high wave number Kelvin
waves propagate without damping even for rings with
small circulation.
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Besides illuminating important physics, the present
work will guide future introduction of phenomenological
reconnection models into vortex filament computational
methods. In this way, the applicability of the latter meth-
ods will be extended to flows with complex vorticity
configurations.
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