
P H Y S I C A L R E V I E W L E T T E R S week ending
7 FEBRUARY 2003VOLUME 90, NUMBER 5
Parametrically Driven Dark Solitons
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We show that unlike the bright solitons, the parametrically driven kinks are immune from
instabilities for all dampings and forcing amplitudes; they can also form stable bound states. In the
undamped case, the two types of stable kinks and their complexes can travel with nonzero velocities.
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localized defect. Conversely, the Bloch wall has a smooth
helicoidal structure, with the amplitude varying over a
The parametric driving is well known to be an efficient
way of compensating dissipative losses of solitons in
various media. Examples include surface solitons in ver-
tically oscillating layers of water [1,2], light pulses in
optical fibers under phase-sensitive amplification [3] and
in Kerr-type optical parametric oscillators [4], and mag-
netization solitons in easy-plane ferromagnets exposed to
oscillatory magnetic fields in the easy plane [5]. A serious
problem associated with the parametric energy pumping,
however, is that the driven solitons are prone to oscilla-
tory instabilities which set in as the driver’s strength
exceeds a certain—often rather low—threshold [5,6].

With a few notable exceptions, the parametrically
driven solitons considered so far had the form of pulses
decaying to zero at spatial infinities. These were solutions
of the nonlinear Schrödinger (NLS) equation with the
‘‘self-focusing’’ nonlinearity

i t �  xx � 2j j2 �  � h � � i� ; (1)

where  is the amplitude of a nearly harmonic stationary
wave oscillating with half the driving frequency, � is the
damping coefficient, h is the driving strength, and �
indicates complex conjugation. However, in a number of
applications the amplitude equation of the parametrically
driven wave turns out to have the nonlinearity of the
‘‘defocusing’’ type:

i t �
1
2 xx � j j2 �  � h � � i� : (2)

In fluid dynamics, the defocusing parametrically driven
NLS (2) describes the amplitude of the oscillation of the
water surface in a vibrated channel with a large width-to-
depth ratio [2,7]. [On the contrary, the ‘‘focusing’’ Eq. (1)
pertains to the case of narrow channels.] The same Eq. (2)
arises as an amplitude equation for the upper cutoff mode
in the parametrically driven damped nonlinear lattices
[8]. In the optical context, it was derived for the doubly
resonant 	�2� optical parametric oscillator in the limit of
large second-harmonic detuning [9]. Next, in the absence
of damping, stationary solutions � My � iMz of Eq. (2)
minimize the Ginzburg-Landau free energy for the an-
isotropic XY model, F �

R
Fdx, where
0031-9007=03=90(5)=054103(4)$20.00 
and M � �0;My;Mz�. This model was used to study
domain walls in easy-axis ferromagnets near the Curie
point [10]. Nonstationary magnetization configurations
were considered in the overdamped limit:  t �
��F=� � [11,12]. The damped Hamiltonian dynamics
 t � �i�F=� � � � provides a sensible alternative;
this is precisely our Eq. (2). Finally, for � � 0 there is
yet another, independent, magnetic interpretation of
Eq. (2); this will be introduced below.

Localized structures characteristic of a defocusing me-
dium are domain walls, or kinks, also known as ‘‘dark
solitons’’ in the context of nonlinear optics. The purpose
of this note is to explore the stability and bifurcations of
the parametrically driven kinks and their bound states.

Two stationary kink solutions of (2) are available in
literature. One is usually called the Néel, or Ising, wall:

 N�x� � iA tanh�Ax�e�i�: (3)

Here A2 � 1�
�����������������
h2 � �2

p
and � � � 1

2 arcsin
�
h [2,7,9]. For

� � 0, the Néel wall coexists with the Bloch wall:

 B�x� � �iA tanh�2
���
h

p
x� 	

���������������
1� 3h

p
sech�2

���
h

p
x�; (4)

A2 � 1� h [13]. Originally, the ‘‘magnetic’’ terminology
was motivated merely by the fact that j j � 0 in the core
of the wall (3), and so the point x � 0 is a phase defect
similar to Néel points in solid state physics [12]. On the
contrary, in the core of the Bloch wall the phase changes
smoothly—and this is analogous to Bloch walls in ferro-
magnets. Below we show that the analogy with magne-
tism is, in fact, much deeper than originally thought.
Letting h � � � 0, the Néel wall becomes the usual,
undriven, dark soliton, whereas the Bloch wall degener-
ates into a flat solution.

Both Bloch and Néel walls admit a clear interpretation
in other physical contexts as well. For example, when
Eq. (3) is used to model the Faraday resonance in water
[2,7] or chains of coupled pendula [8], both solutions
describe transitions between two domains oscillating
180
 out of phase. The phase of the oscillation is discon-
tinuous across the Néel wall and the amplitude changes
over a narrow region; hence the wall appears as a highly
2003 The American Physical Society 054103-1
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FIG. 1. (a) The momentum of the traveling Bloch and Néel
walls (thick) and their nonoscillatory bubblelike complex (thin
line). For jVj close to c, the wall attaches a small-amplitude
bubble on each flank; this accounts for the turn of the thick
curve near jVj � c. The dotted segments of the continuous
branches indicate unstable solutions. (b) The formation of
an oscillatory breatherlike complex of two walls. (Only
the real part of  is shown for visual clarity.) In (a), h � 1

15 ;
in (b), h � 0:1.

P H Y S I C A L R E V I E W L E T T E R S week ending
7 FEBRUARY 2003VOLUME 90, NUMBER 5
wider interval. It might therefore be tempting to expect
that in the region of their coexistence (h < 1

3 ), the Néel
wall should be unstable against the decay into the
‘‘smoother’’ (Bloch) wall, and this is indeed the case in
the Ginzburg-Landau and Klein-Gordon counterparts of
Eq. (2) [11,14,15]. Surprisingly, the NLS dynamics turn
out to be very different.

We will show, numerically, that when � � 0, both walls
are stable. They can move stably and form stable sta-
tionary or oscillatory bound states. The resulting bifurca-
tion diagram will then be interpreted using two integrals
of motion of Eq. (2), and a relation of our model to biaxial
ferromagnets established. Turning to the dissipative case,
we will give an analytical proof of the stability of the
Néel wall for all h and � and describe stable bound states
formed by the damped walls.

Both static kinks, (3) and (4), belong to a broader class
of uniformly moving solutions of the form  �x� Vt�. We
found these by solving equation 1

2 xx � iV x � j j2 �
 � h � [16]. Figure 1(a) shows the momentum of the
traveling wall as a function of its velocity. The momen-
tum P � Im

R
 x �dx is one of the two conserved quan-

tities of Eq. (3) with � � 0, and hence is a natural choice
for the integral characteristic of its solutions. The second
integral is energy, and it will also be used below:

E � Re
Z �

j xj2

2
�

j j4

2
� j j2 � h 2 �

A4

2

�
dx: (5)

(Here A2 � 1� h.) The stability of the traveling walls
was examined [16] by computing eigenvalues � of

H ~’’ � �J ~’’; (6)

where ~’’ � �u; v�T , the operator H is given by

H � �
I
2
@2x

�

�
3R2 � I2 � 1� h 2RI � V@x � �
2RI � V@x � � R2 � 3I2 � 1� h

�
;

and J is the antisymmetric matrix with J21 � �J12 � 1.
Equation (6) is obtained by linearizing Eq. (2) about  �
R� iI in the comoving frame, and letting � � �u�
iv�e�t.

In a striking contrast to the diffusive and relativistic
dynamics [11,14,15], our numerical analysis of Eq. (6)
reveals that not only the stationary Néel wall, but the
entire branch of traveling kinks in Fig. 1(a) is stable. This
multistability admits a simple explanation in terms of the
energy and momentum, though. The energy of the sta-
tionary Néel wall, EN � 4

3 �1� h�3=2, is greater than that
of the stationary Bloch wall, EB � 4

���
h

p
� 4

3h
3=2, and so

one might expect  N to decay into  B plus radiation
waves—as in the relativistic case [14]. However, unlike
their relativistic counterparts, our Bloch and Néel walls
have unequal momenta, with PB > PN [see Fig. 1(a)]—
and this makes the  N !  B decay impossible.

Next, our simulations of the time-dependent Eq. (2)
show that two stationary Bloch walls with opposite
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chiralities [i.e., opposite signs in (4)] can attract and
form a motionless breatherlike bound state [Fig. 1(b)].
An attraction of stationary Bloch and Néel walls results
in a moving breather. There also exist nonoscillatory,
bubblelike, bound states of  N and  B. Note that unlike
their parent walls, all of these complexes approach the
same background as x! 1 and x! �1. The bubblelike
solitons admit most transparent physical interpretation:
they describe ‘‘islands’’ of one stable phase in the sea of
the other one, e.g., patches oscillating 180
 out of phase
with the rest of the vibrated water channel or chain of
pendula. Below we focus on the bubbles and relegate the
breathers to a separate publication.

For each h there is a one-parameter family of motion-
less bubbles, the parameter being the separation distance
z between the two walls. [Accordingly, there are two zero
eigenvalues in the spectrum of the operator (6) associated
with each bubble, one translational and the other one
corresponding to variations in z.] There is a particular
054103-2
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separation z � ' for which the bubble is symmetric:
 �
' ��x� � � ' �x�. The symmetric bubble turns out to

have the largest momentum over bubbles with various z,
while ' is the smallest possible separation: z  ' . More
importantly, it is the only stable bubble. All nonsymmet-
ric bubbles (z > ') were found to have a pair of nonzero
real eigenvalues 	� in their spectrum. As z! ' , the pair
converges at the origin and so the symmetric bubble has
four zero eigenvalues.

Let 	� be a pair of eigenvalues diverging from zero as
z grows from ' and assume that � � (1=2�1 � . . . for
small ( � z� ' . Then the associated eigenfunction ~’’
expands as ~’’ � ~’’0 � (1=2 ~’’1 � . . . , where ~’’0 is a linear
combination of the two zero modes, ~’’0 � �C1@x ~  �
C2@z ~  �jz�' , with ~  � �R;I�T . (The other two zero ei-
genvalues have only generalized eigenvectors associated
with them.) Substituting this into (6) and using H z �
H ' � (H 1 � . . . , the order (1=2 yields H ' ~’’1 �
�1J ~’’0. A bounded solution ~’’1�x� exists only if �1J ~’’0

is orthogonal both to @z ~  and @x ~  . This orthogonality
condition amounts to �dP=dz�jz�' � 0, and the latter
relation explains why the momentum has to reach its
maximum at the value of z for which a pair of real
eigenvalues converges at the origin.

The other implication of the relation dP=dz � 0 is that
it allows the symmetric bubble to be continued to V � 0
[17]. The resulting branch of moving bubbles is shown in
Fig. 1(a). As jVj ! c � �1� 2h�

���������������������
4h�1� h�

p
�1=2, which

is the minimum phase velocity of linear waves, the
bubble degenerates into the flat background, whereas
when V; P! 0, it transforms into a pair of Néel walls
with the separation z! 1. The entire branch of moving
bubbles is stable, with the exception of a small region
between V � 0 and the point of the maximum jPj inside
which a real pair 	� occurs [Fig. 1(a)]. The change of
stability at points where dP=dV � 0 is explained in [17].

The diagram Fig. 1(a) can further justify referring to
the kinks (3) and (4) as Néel and Bloch walls. In fact,
stationary nonchiral interfaces called Néel walls are
known in uniaxial ferromagnets, where they coexist
with chiral (Bloch) walls. When the axial symmetry is
broken, the two types of walls can move; this occurs, in
particular, in easy-axis ferromagnets with the second,
weaker, anisotropy axis [*; ( < 0 and H � 0 in Eq. (8)
below] [18]. The P�V� curve for the easy-axis walls is
qualitatively similar to our Fig. 1(a): The Néel wall’s
momentum PN � 0 while PB � 0; as the velocity V
grows, the two branches are drawn closer together and
finally merge. The limit velocity V � w is known as the
Walker’s velocity [18]. The E�V� curves are also similar.

This analogy suggests that there could be a link
between the time-dependent NLS (3) and Heisenberg
ferromagnets, and, indeed, there is one. Consider a
quasi-one-dimensional ferromagnet with a weakly aniso-
tropic easy plane �Mx;My�, in the external stationary
magnetic field along Mz. The magnetization vector M �
�Mx;My;Mz� lies on the sphere, M2 � M2

0, and satisfies
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the (damped) Landau-Lifshitz equation [18]

�h
2-0

M. � M�
�
�M

Z
W d/� �M�M.; (7)

W �
0
2
�@/M�2 �

*
2
M2
z �

(*
2
M2
x �HMz �W 0; (8)

with * > 0. If the anisotropy parameter ( is small and
the fieldH is close to *M0,H � *M0 � (q, the vector M
will stay near the northern pole of the sphere. Choosing
s � qM0 � *M2

0=2 > 0 for ( > 0 and s < 0 for ( < 0,
we define Mx � iMy � �2(s=*�1=2 �. Assuming that the
relaxation constant � is O�(1=2� or smaller, and that M
depends only on ‘‘slow’’ variables x � �(s=20M2

0�
1=2/

and t � �2(-0s= �hM0�., Eq. (7) reduces to (2) with h �
*M2

0=�2s� and � � 0. Note that the resulting NLS is
undamped—although the original Landau-Lifshitz
equation did include a small damping term. The effect
of damping will become noticeable only on time scales
longer than (�1; these are not captured by Eq. (2). Also
note that despite the analogy between the easy-axis and
easy-plane ferromagnets, there are important physical
differences. In particular, in the easy-axis case the walls
interpolate between M=M0 � 	�0; 0; 1� while in our case
they separate domains with M� �0;	j(j1=2; 1�.

Proceeding to the damped situation, � � 0, our first
goal is to demonstrate the stability of the Néel wall.We let
 �x; t� �  N�x� � � �x; t�, where

� �x; t� � �u�X� � iv�X��e�-���T�i�; (9)

X � Ax, T � A2t, and � � A�2�. Linearizing Eq. (2) in
small � we obtain an eigenvalue problem

�L0 � (�v � �-� ��u; L1u � ��-� ��v; (10)

where ( � 2� 2=A2 and L0 and L1 are the Schrödinger
operators with familiar spectral properties:

L0 � �1
2@

2
X � sech2X; L1 � L0 � 2 tanh2X:

Introducing 42 � -2 � �2 and w � 4�1�-� ��v, we
eliminate � from the eigenvalue problem (10):

�L0 � (�w � 4u; L1u � �4w: (11)

Now we will show that 42 < 0 for all 0 � ( < 2, so that
-2 < �2 and all perturbations decay to zero as t! 1.

The operator L1 has a zero eigenvalue, with the asso-
ciated eigenfunction y0�X� � sech2X, and no negative
eigenvalues. Consequently, on the subspace R defined byZ

u�X�y0�X�dX � 0; (12)

there exists an inverse operator L�1
1 and so (11) becomes

�L0 � (�u � �42L�1
1 u, with L0 � ( symmetric and L�1

1
a positive operator. The smallest eigenvalue �420 is given
by the minimum of the Rayleigh quotient:

� 420 � min
u2R

R
u�L0 � (�udXR
uL�1

1 udX
: (13)
054103-3
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To prove that �420 > 0 it is sufficient to show that the
minimum of the quadratic form

R
u�L0 � (�udX is posi-

tive on R [19]. Assuming that u�X� are normalized byR
u2dX � 1, the minimum is attained on the solution

u�X� to the nonhomogeneous boundary-value problem

�L0 � (�u�X� � 5u�X� � 0y0�X�; (14)

where 5 and 0 are the Lagrange multipliers. The mini-
mum equals 5—provided 5 and 0 are chosen so that the
u�X� satisfies Eq. (12) and the normalization constraint.

The operator L0 has a single discrete eigenvalue
E0 � � 1

2 with an eigenfunction z0�X� � �1=
���
2

p
�sechX,

and the continuous spectrum of eigenvalues E�k� � k2,
with

zk�X� �
ik� tanhX
ik� 1

e�ikx; �1< k<1: (15)

Expanding y0 and u over the complete set fz0; zkg gives

y0�X� � Y0z0�X� �
Z
Y�k�zk�X�dk;

u�X� � U0z0�X� �
Z
U�k�zk�X�dk:

Using the orthogonality of the functions in the set,
Eq. (14) produces U�k� � 0�k2 � (� 5��1Y�k� and
U0 � 0�E0 � (� 5��1Y0. Using these in (12) gives

g(�5� �
Y2
0

E0 � (� 5
�

Z 1

�1

jY�k�j2

k2 � (� 5
dk � 0: (16)

The minimum of the quadratic form
R
u�L0 � (�udX is

given by the smallest root ~55 of the function (16). The
function g(�5� is increasing for �1<5 � (, apart from
the point 5 � E0 � ( where it drops from �1 to �1. As
5! �1, g(�5� ! �0; as 5! (, g(�5� tends to a finite
value. [This follows from the fact that

Y�k� �
ik

1� ik
8k=2

sinh�8k=2�
;

hence the integral in (16) converges for all 5 � (.]
Consequently, there is only one root ~55 and its sign is
opposite to the sign of g(�0�. Since @g(�5�=@( < 0, we
have g(�0�< g0�0� while the value g0�0� is calculated as

g0�0� �
Y2
0

E0
�

Z 1

�1

jY�k�j2

k2
dk �

Z
y0L

�1
0 y0dX: (17)

Noticing that L�1
0 y0�X� � �1� c tanhX, with c an arbi-

trary constant, Eq. (17) yields g0�0� � �2, and hence ~55
cannot be negative for any (. Thus �42 > 0 and the Néel
wall is stable for all h and � (with h  �  0).

Are there any other attractors for nonzero �? When
� � 0, the momentum is, in general, changing with time,
_PP � �2�P, and therefore a uniformly moving soliton

has to satisfy P � 0. Since both curves in Fig. 1(a) cross
the P � 0 axis only at the stationary Néel walls,
we conclude that no other solutions persist for small
054103-4
nonzero �. This does not, however, exclude the existence
of new solutions for larger �. Our numerical analysis has,
in fact, revealed a window of h values, � < h & 0:35�
0:8� (with 0:1 � � � 0:85) where two Néel walls attract
and form a stable stationary bubble.

In conclusion, the remarkable stability of the damped-
driven kinks and their bound states is in sharp contrast
with stability properties of the bright solitons. The stable
coexistence of two types of domain walls and their com-
plexes in the undamped case is also worth emphasizing.
This multistability is not observed in the parametrically
driven Klein-Gordon and Ginzburg-Landau equations
and is due to the availability of the momentum integral
which takes different values on different solutions.

We thank Nora Alexeeva for writing a pseudospectral
code for the time-dependent NLS equation, Eq. (2).
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