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This Letter presents a method by which the mean field dynamics of a population of dynamical
systems with parameter diversity and global coupling can be described in terms of a few macroscopic
degrees of freedom. The method applies to populations of any size and functional form in the region of
coherence. It requires linear variation or a narrow distribution for the dispersed parameter. Although an
approximation, the method allows us to quantitatively study the transitions among the collective
regimes as bifurcations of the effective macroscopic degrees of freedom. To illustrate, the phenomenon
of oscillator death and the route to full locking are examined for chaotic oscillators with time scale
mismatch.
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dimension grows with the population size, the onset of
macroscopic oscillations from incoherence cannot, in
general, be described by means of a closed system of a

We then show that the approach continues to apply to
nonstationary regimes: varying the parameter spread, the
transition from oscillator death to full synchronization in
Introduction.—Populations of globally coupled dy-
namical systems represent a useful framework to study
the collective properties of biological systems [1], allo-
sterically activated enzymatic reactions [2], electronic
devices [3], and chemical reactions [4–6]. Although
started as qualitative analyses, in the past years it has
appeared that such theoretical approaches can be linked
quantitatively to experimental systems, such as electro-
chemical oscillators [7], arrays of Josephson junctions [8]
or metabolic synchronization in suspensions of yeast
cells [9]. Globally coupled systems can show different
macroscopic behavior when the coupling strength and the
parameter dispersion are changed. If the coupling is high
enough and the parameter dispersion sufficiently small,
the elements of the population evolve in time close to each
other (and thus to the mean field) in phase space. In the
opposite case, the elements of the population move in-
coherently and eventually their positions average out, so
that the asymptotic dynamics of the mean field is char-
acterized only by fluctuations that vanish in the limit of
an infinite number of elements. Between these two limit-
ing cases, complex collective behavior arises. This type of
scenario has been observed in a wide number of systems,
starting from the early works of Winfree and Kuramoto
on phase rotators [10], over limit cycle oscillators [11] to
chaotic oscillators [12]. Investigations have been per-
formed with various statistical methods, based on phase
reduction [6,13], the continuity equation formalism [14],
or the slaving principle [15]. In particular, the introduc-
tion of order parameters has appeared to be useful for
quantifying the collective regimes, as it aims at providing
a direct link between the microscopic and the macro-
scopic dynamics. However, due to the fact that for low
coupling the system spans a region of phase space whose
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few macroscopic degrees of freedom. In the coherent
region, on the other hand, the macroscopic dynamics lives
on a low dimensional manifold which coincides, in the
limit of identical oscillators, with the trajectory of a
single uncoupled element of the population, and thus a
description in terms of a few effective degrees of freedom
may work. Indeed, for limit cycle oscillators with strong
coupling and small parameter diversity, an order parame-
ter expansion was recently given by De Monte and
d’Ovidio [16], showing that the transient and asymptotic
dynamics of the mean field can be accounted for by only
two macroscopic variables.

In the present work we propose a method by which the
mean field dynamics of globally coupled dynamical sys-
tems [maps or ordinary differential equations (ODEs)]
with dispersion on one parameter can be systematically
reduced (in the coherent regimes) to a system of two
coupled order parameters. The conditions we need to
impose are either a linear dependence or a narrow dis-
tribution for the dispersed parameter and, in general,
smooth dynamical systems. The method can be applied
to both finite and infinite population sizes.

This Letter is organized in two parts. First, we general-
ize the method proposed in Ref. [16] to any population of
ODEs or maps: the equations of motion of the mean field
and of a second order parameter, appearing when the
parameter diversity is introduced, are derived from the
microscopic equations through a perturbative approach.
The theory provides approximate but still quantitative
predictions, which are tested on populations of ODEs
with time scale mismatch. In particular, we study the
phenomenon of oscillator death, in which an attracting
equilibrium appears in the system due to the interplay
between high parameter dispersion and strong coupling.
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a population of Rössler systems is followed, and this
allows us to characterize the various locked regimes in
terms of a cascade of macroscopic bifurcations.

Order parameter expansion.—Let us consider a popu-
lation of N dynamical systems in the coherence region,
i.e., such that the distance kX � xjk between the mean
field X and the state xj of any of the oscillators remains
small in time. For ODEs the dynamics of the jth element
of the population is defined by the equation

dxj
dt

� f�xj; pj� � K�X�;

while for maps

xj ! f�xj; pj� � K�X�:

To simplify the notation, we write in general T xj �
f�xj; pj� � K�X�, where T xj is the operator of time evo-
lution applied to xj. The variables xj 2 Rn are the state
vectors and pj 2 R is a real parameter taken from a
distribution of average p0 � hpi and variance �2 �
h�p� p0�

2i. The oscillators are assumed to be globally
coupled to the mean field X � hxi �

PN
j�1 xj=N through

the function K:Rn ! Rn. A change of variables xj � X �
�j expresses the position of every element of the popula-
tion in terms of the mean field, so that in the coherent
regime a series expansion in �j can be performed. Setting
�j � pj � p0 and writing the mixed differentials in x
and p as Dx;p, we get

T xj � f�X; p0� �Dxf�X;p0��j �Dpf�X; p0��j

�Dx;pf�X; p0��j�j � o�j�jj
2� � C: (1)

The terms in o�j�jj
2� are small because of the hypothesis

of coherence. C contains all the Taylor terms that are not
O�j�jj

2�, i.e., terms with a factor of the type: Dx;pm
�m

with m > 1. This term may be neglected if the depen-
dence on the parameter is linear or if the parameter dis-
tribution is narrow. In fact, in the first case Dx;pm

�m � 0;
8m > 1, while in the second the term is O��2

j �. We can
thus discard these two terms and construct the macro-
scopic equations, by averaging Eq. (1) and using h � i �
h� i � 0:

T X � f�X; p0� �Dx;pf�X;p0�h� � i:

The only first order term that is left defines a new macro-
scopic variable W :� h��i, that we call the shape pa-
rameter. It measures the dispersion in both the
parameter and the phase space.

In order to close the system, the equation of motion for
W has to be obtained as well. As for the mean field, this
can be done by writing TW � T h��i � h�T xi and then
using Eq. (1). Discarding again higher order terms and
making the closure assumption that the term h��2i is
negligible relative to h�2i (which is true in the coherent
regimes), a closed (approximated) system is obtained for
the two macroscopic variables:
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(
T X � f�X; p0� �Dx;pf�X; p0�W � K�X�

TW � �2Dpf�X; p0� �Dxf�X;p0�W:
(2)

The mean field thus behaves like an uncoupled individual
element if the oscillators are identical (since in this case
W � 0). However, parameter diversity may induce new
regimes. We remark that the method can be applied in the
same way for other choices of the coupling term.

Populations with time scale diversity.—Let us now
apply the order parameter reduction to the coherent be-
havior in populations of oscillators with time scale diver-
sity. These oscillators may be regarded as a generalization
of oscillators with different natural frequencies (e.g., the
Kuramoto model) and are defined by the equation

dxj
dt

� �jg�xj� �K�X � xj�: (3)

�j are strictly positive numbers (which rescale the speed
along the orbit) and the matrix K � kI provides an
isotropic diffusive coupling.

Oscillator death.—As a first application, we address the
phenomenon of oscillator death, which was first described
in limit cycle oscillators with a large natural frequency
mismatch and strong coupling [15,17]. Under these con-
ditions, all the elements eventually collapse on the origin,
which is an unstable focus for the uncoupled systems. It
was then supposed that the phenomenon is more general
[18] and it was actually described in many other systems
(such as Brusselators [5] and biological systems [19])
where an equilibrium, unstable in the uncoupled case,
becomes attracting and suppresses the periodic or chaotic
oscillations. When the oscillator death takes place, the
regime is trivially coherent since all the elements of the
population lie on the same equilibrium (which does not
need to be unique) and the dependence on the dispersed
parameter is linear, so that the requirements for applying
the order parameter reduction are both satisfied. The
order parameter expansion allows us to treat the problem
in general and with a simple analysis, showing that an
unstable equilibrium of g (that, without loss of generality,
we put at the origin) can always be stabilized by large
time scale dispersion and high coupling, provided that the
equilibrium is a saddle focus whose repelling eigenvalues
have an imaginary part larger than the real one. In the
reduced system Eq. (2), the macroscopic equilibrium
corresponding to oscillator death is the point X � 0;
W � 0 and its stability can be studied with simple alge-
bra (the Jacobian matrix is composed by four blocks
which can be simultaneously diagonalized). For each
eigenvalue �l � al � ibl of the unstable equilibrium of
g�x�, two macroscopic eigenvalues appear:

�l
1;2 � �l �

k
2 �

�������������������������
�k2�

2 � �2
l �

2
q

: (4)

It is clear that if the equilibrium for the uncoupled system
is repelling due to a purely real and positive eigenvalue,
054102-2



P H Y S I C A L R E V I E W L E T T E R S week ending
7 FEBRUARY 2003VOLUME 90, NUMBER 5
then the corresponding � always has a positive real part
and the oscillator death solution cannot be stable. Instead,
if the instability is due to couples of complex conjugates,
the condition for the oscillator death to be stable is that
the real parts of the eigenvalues (4) are all negative.

Let us now consider the case in which only two eigen-
values of the uncoupled system are complex conjugate,
while the others are real and negative. This is the only
case where oscillator death can appear in populations of
globally coupled two- or three-dimensional systems, such
as coupled Lorenz or Rössler oscillators. The bifurcation
condition Eq. (4) now reduces to a single inequality.
Recalling the definition of �, the boundary of the oscil-
lator death Re��� � 0 (where the indices have been
dropped due to the fact that there is only one pair of
complex eigenvalues) can be rewritten in the form����������Re

2
4

��������������������������������������������
1� 4�1� i��2

�
�
k�

	
2

s 3
5
����������� 1�

2

k�
: (5)

Here k� � k=a and � � b=a, corresponding to a rescal-
ing of the variables so that the real part of the uncoupled
system’s eigenvalues is unitary. The bifurcation boundary
is thus a surface in the space �k�; �; ��. The fact that only
three parameters account for the stability of oscillator
death in any population with the aforementioned charac-
teristics follows from the fact that oscillator death is
essentially a local phenomenon, so that the nonlinearities
influence at most the critical character of the macroscopic
Hopf bifurcation. In the plane �k�; ��, the bifurcation
boundaries are lines parametrized by � (Fig. 1). Their
asymptotic behavior can be computed from Eq. (5) and
gives k� � ��2 � 1��2 (upper boundary, to locking) and
k� � 2�1� �� (lower boundary, to incoherence). More-
over, if the imaginary part of � is much larger than the
real one (i.e., in the limit � ! 1), a further rescaling is
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FIG. 1. Comparison of the bifurcation boundaries for the
oscillator death in the full and the reduced system for different
populations of dynamical systems: Lorenz (p � 10, b � 8=3)
r � 28 (�), r � 32 (�), r � 50 ( � ); Rössler (b � 0:4, c � 8)
a � 0:01 (4), a � 0:1 (�), a � 0:4 (�). The continuous lines
are the bifurcation boundary for the corresponding reduced
systems. Populations of 100 elements and Gaussian parameter
distributions have been used.
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possible: �� �
���������������
�2 � 1

p
�. In this limit, the bifurcation

boundaries can be rescaled to the same line: k� � ��2 and
k� � 2. Oscillators as different as Rössler and Lorenz
systems rescale to the same curve obtained analytically
from Eq. (5) (Fig. 2).

Nonsteady coherent regimes.—Let us now speculate
about what happens outside the region of oscillator death.
On the lower boundary the coupling is weak relative to
the parameter spread and the system will bifurcate into
incoherence; therefore, we expect the expansion to no
longer be valid. On the upper boundary, by contrast,
where the closure assumptions are satisfied, the phase
transition to the locked state arises macroscopically as a
Hopf bifurcation. The validity of the introduced approxi-
mations, moreover, is maintained in the locked regime,
where the oscillators remain close to the mean field. For
this reason, not only the transition out of the oscillator
death but any other bifurcation up to the fully synchro-
nized state can be identified through the reduced system.
As an example, Fig. 3 compares the behavior of the mean
field of a population of 32 Rössler oscillators with time
scale mismatch to the order parameter expansion Eq. (2).
Changing the spread � in the time scale distribution, a
complete period doubling cascade can be followed, con-
necting the fully locked regime to oscillator death, with
remarkable quantitative agreement. From the validity of
the order parameter expansion in describing the macro-
scopic chaotic dynamics, one can infer that the Lyapunov
spectrum of the reduced system is composed by the
dominant eigenvalues of the full system. The microscopic
degrees of freedom which are neglected in the approxi-
mation would therefore act as a perturbation on the col-
lective dynamics and give a small contribution to the
Kaplan-Yorke dimension of the macroscopic attractor.

Conclusions.—In ensembles of globally coupled os-
cillators, parameter diversity may induce nontrivial col-
lective behavior, where the mean field dynamics is
qualitatively different from that of each uncoupled
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FIG. 2. The bifurcation boundaries of oscillator death for
different types of oscillators collapse on the same, analytically
determined curve (continuous line) after rescaling the parame-
ters k and �. Symbols as in Fig. 1.
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FIG. 3. Poincaré section of the mean field and of the shape
parameter for a population of 32 coupled Rössler oscillators
(a � 0:25, b � 1, c � 8:5) with time scale mismatch (top) and
for its order parameter reduction (bottom). The coupling is
k � 1. The systems go from chaos to oscillator death when the
standard deviation � of the parameter distribution increases.
The reduced system reproduces the bifurcation cascade of the
population with remarkable quantitative agreement.
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element. In this work we have shown that such regimes
are low dimensional in the region of coherence and that a
description by means of few effective degrees of free-
dom may be given. This is done through an expansion
around the perfectly synchronized state. Although the
method involves some approximations (it is not exact
even for a linear analysis), it provides nevertheless an
accurate and quantitative description of the dynamics at
the macroscopic level. We remark that there are no re-
quirements on the population size: as far as the oscillators
are of the same type, populations of different sizes be-
have the same if they have the same coupling term and
the same variance of the parameter distribution. The
somewhat surprising consequence of this fact is that the
macroscopic features of the coherent regimes can be
accounted for by a system of just two coupled oscillators,
providing a two-body approximation of the population
dynamics. Finite size effects, however, do arise as the
region of incoherence is approached, and the dimension
of the collective dynamics increases. There are several
ways in which we think our approach can be developed
further. In particular, the inclusion of higher order
terms may allow us to explain more complex collective
regimes arising close to incoherence. Moreover, a simi-
lar approach accounts for the effect of noise on the col-
lective dynamics of identical oscillators. A macroscopic
bifurcation scenario similar to that induced by parameter
diversity appears in large populations of noisy chaotic
maps. This bifurcation and the finite size effects can again
be described in the framework of an order parameter
expansion [20].
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