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We experimentally and numerically investigate the quantum accelerator mode dynamics of an atom
optical realization of the quantum J&-kicked accelerator, whose classical dynamics are chaotic. Using a
Ramsey-type experiment, we observe interference, demonstrating that quantum accelerator modes are
formed coherently. We construct a link between the behavior of the evolution’s fidelity and the phase
space structure of a recently proposed pseudoclassical map, and thus account for the observed

interference visibilities.
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The way in which macroscopic classical phenomena
originate in the quantum regime remains a subject of
dispute [1]. The issues involved are particularly marked
for quantum versions of classically chaotic systems [2].
Experimental investigations of such systems began with
studies of microwave-driven hydrogen [3]; subsequent
work has also centered on microwave cavities [4], meso-
scopic solid-state systems [5], and atom optics [6], the
approach we adopt. In this Letter we consider the quan-
tum &-kicked accelerator [7-9], a 6-kicked rotor with an
additional static linear potential. The &-kicked rotor is
one of the most extensively investigated systems in cha-
otic dynamics [10], and is equivalent to a free particle
subjected periodically to instantaneous momentum kicks
from a sinusoidal potential. Quantum mechanically, the
effect of these kicks is to diffract the particles’ constitu-
ent de Broglie waves into a series of discrete momentum
states. In the d&-kicked accelerator, the linear potential
modifies the chaotic classical dynamics only slightly,
yet can radically change the quantum behavior. The
phases accumulated between consecutive kicks by the
momentum states are altered, leading to the creation of
quantum accelerator modes (QAM) [7-9]. We realize
quantum &-kicked accelerator dynamics in laser-cooled
cesium atoms by the application of short pulses of a
vertical standing wave of off-resonant laser light, which
constitutes a sinusoidal potential; gravity provides the
linear potential. QAM are characterized by a linear
(with kick number) momentum transfer to a substantial
fraction ( ~ 20%) of the atoms. If coherent, this efficient
momentum transfer promises applications in atom inter-
ferometry [11]. We use a Ramsey-type interference ex-
periment [12] to show that QAM do preserve coherence.
We then relate the Ramsey fringe contrast to the fidelity f
[13]; by a numerical analysis, we link the behavior of f
to the phase space structure generated by a pseudoclassi-
cal map recently proposed by Fishman, Guarneri, and
Rebuzzini (FGR) [14]. This map is applicable when the
interkick evolution time is close to resonant values [15].
Finally, we explain differences in the observed fringe
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visibilities by examining the effect of the experimental
range of kicking strengths.

In our interference experiment the atoms undergo
o-kicked accelerator dynamics, between the application
of two 77/2 microwave pulses that couple two atomic
hyperfine levels. In the absence of coherence-destroying
spontaneous emission, the contrast of any interference
fringes is related to the overlap of two initially identical
motional states evolved under slightly different chaotic
Hamiltonians [16], i.e., the fidelity. It can therefore yield
information on the sensitivity of the atoms’ evolution to
variations in the kicking strength. Strong sensitivity can
be considered a quantum signature of chaos, particularly
in the semiclassical limit (£ — 0), as the eigenstates are
sensitive to such variations. Hence the use by Peres [17] of
f as a measure of quantum stability.

After magneto-optic trapping and molasses cooling to
5 wK, we prepare around 10° freely falling cesium atoms
in the F = 3, my = 0 hyperfine level (denoted |a)) of the
6%S, /2 ground state [18]. The first 77/2 microwave pulse
creates an equal superposition of the atoms’ internal
states, i.e., |a) — (la) — ie’?|b))/+/2, where |b) denotes
the FF =4, mp = 0 level. The phase 6 of this pulse can
be changed with respect to that of the second 77/2 pulse,
applied following 20 equally spaced 500 ns pulses from a
standing wave of light. This is formed by retroreflection
of a Ti:sapphire laser beam; its maximum intensity is
~1 X 10* mW /cm? [9], and the light is red detuned by 45
and 35 GHz from the DI transition for atoms in states |a)
and |b), respectively. After the second 77/2 microwave
pulse, we measure the momentum distribution in state |b)
by a time-of-flight method. For more details of our ex-
perimental setup, see Refs. [8,9]. Measurement of a peri-
odic variation with € in the QAM population in state |b),
i.e., interference, directly implies coherent evolution.

In the limit of large detuning, the Hamiltonian is

PO - h
A = H la)Xal + H,|b)b] + =5

(16)b| — laXal), (1)

where fiw,, is the energy gap between |a) and |b), and
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is the quantum &-kicked accelerator Hamiltonian, acting
on atoms in internal state |o) € {|a), |b)}. Here % is the
vertical position, p the z momentum, m the particle mass,
g the gravitational acceleration, ¢ the time, T the pulsing
period, () the Rabi frequency, ¢, the pulse duration, 87
the detuning from the DI transition for the state |o), and
G = 47/ A, where A = 894 nm is the laser wavelength,
and /G is a grating recoil (the momentum separation of
adjacent diffracted states). We denote the amplitude of the
phase modulation to atoms in state |b) that results from
application of the standing wave as ¢, = Q%1,/857. The
experimental mean value of ¢, is 0.87r, and, due to the
different detuning, that of the corresponding quantity for
atoms in state |a) is ¢% = ¢,6%/8¢ = 0.6ar. We thus
have effectively two different Hamiltonians, applied to
the same initial motional state. The pulse train leads to
the creation of a QAM, the momentum of which is the
same for the two internal states [8]. We consider pulse
periods T = 60.5 us and 74.5 us, close to Ty =
27m/hG? = 66.7 us, which corresponds to the lowest
second-order quantum resonance in the o-kicked rotor
[9,15]. Well-populated QAM involving substantial mo-
mentum transfer are then created [7-9].

Figure 1(a) shows the measured final momentum dis-
tributions of |b) atoms, for T = 60.5 us. We see a
period-27r variation with 6 in the QAM population (at
around —17AG), the visibility V of which is (21 = 2)%
[19]. We observe similar fringes for a range of detunings
(52 = 20-40 GHz) and total number of kicks N =
10-30, over which V can vary between 10% and 40%.
This periodic variation of the population demonstrates
interference, and hence that the QAM transfers momen-
tum coherently. At 7 = 74.5 us [Fig. 1(b)], however,
fringes in the QAM (at around 20/iG) are practically
invisible, despite the expected coherent nature of the
momentum transfer. In Figs. 1(c) and 1(d) numerical
simulations [7-9], incorporating the experimental range
of ¢, (0.37 to 1.27), also show this difference in the
fringe visibility for the two values of 7. The range of ¢,
is due to the Gaussian profile of the standing wave inten-
sity (FWHM ~1 mm) and the spatial extent of the atomic
cloud (Gaussian density distribution, FWHM ~1 mm)
[9]. As we optimized the overlap of the laser beams
with the atomic cloud, the intensity and density maxima
can be assumed to be coincident. The calculated visibility
is 25% for T = 60.5 ws [Fig. 1(c)] but only 8% for T =
74.5 ps [Fig. 1(d)].

In order to explain these surprising observations, we
introduce the Floquet operator £, (¢,). This describes the
effect of one kick and the subsequent free evolution on the
motional state of atoms in state |b):

Fy(¢y) = exp(—ilyx + p2/2]/k) exp(id,[1 + cos ).
)
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FIG. 1 (color online). Experimental momentum distributions
as the microwave phase difference 6 is varied in a 7/2—20
kick—m/2 sequence where &% ~35GHz, with (a) T =
60.5 us (QAM at —17AG), and (b) T = 74.5us (QAM at
20iG). Corresponding numerical momentum distributions,
where Bf = 35 GHz, are in (c) and (d). Population arbitrarily
normalized to maximum value = 1.

We define F,(¢,) analogously for state |a), with ¢,
replaced by ¢¢ [20]. We use scaled position and momen-
tum variables y = Gzand p = GT p/m, while y = gGT?
incorporates gravity, and k = AiG*T/m = —i[ %, p] is an
effective Planck constant [9]. After N pulses an initial
plane wave |g) of wave number ¢ evolves to
Fo(¢)Vg) = e Vpl(db,)), where ¢ =, or 4.
Regarding the initial motional state as an incoherent
superposition of |g), the momentum distribution in |b)
for a given ¢, after the 7/2—N kick—a/2 sequence, is

Puibap) = 5 [ daC@UIHGa PP + 1050 IP)

o ‘ f dqC(@(ba P ¥(ba p)

X cos[¢;(¢g p) + Nop, + 0] 3)

where 8¢, = ¢ g — ¢4, ¥5(Pa p) = plp&(dy)), and ¢, is
the phase of the interference term, i.e., [dqC(q)yd ] =
| [dgC(q)ypd ylle’?, and C(q) describes the initial
Gaussian momentum distribution (FWHM =6 7G). The
third (interference) term in Eq. (4) is responsible for the
appearance of fringes in the accelerated |b) popula-
tion. We denote the amplitude of the modulation in P,
by A(b 4, p)/2= [dqC(q)i(da p) (P4 p)I/2, Where
[dpA(dy p)* = f(dy) is the fidelity for a given ¢,.

We have calculated the individual terms of P, numeri-
cally for a wide range of ¢,, obtaining as a consequence
an important result linking the pseudoclassical analysis
of FGR [14] with the quantum stability measure of Peres
[17]. Comparison of Figs. 2(a) and 2(c) with Fig. 1 shows
that the region in momentum space corresponding to a
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QAM is also a region of high A. This remains high up to
large values of ¢, , continuing beyond the point at which
it has decayed to nearly zero in other regions of momen-
tum space. As f = [ dpA?, its large value when deter-
mined by integrating over the momenta populated by
atoms in the QAM implies that these atoms inhabit a
stable region of quantum state space. Small A need not
imply low population, as we see in Figs. 2(b) and 2(d).
Contrasting Fig. 2(a) with Fig. 2(c), we see that this large
value of A extends over a significantly wider range of ¢,
for T = 60.5 us than for T = 74.5 us. Hence, we can
interpret the QAM at T = 60.5 us as being more robust
to variations in ¢, i.e., more stable, compared with that
at T = 74.5 us. However, given our experimental range
of ¢,, this does not explain the difference in fringe
visibilities seen in Fig. 1.

The appearance of QAM in the &-kicked accelerator is
explained in the analysis of FGR [14] by islands of
stability in the phase space generated by the map [21]:

Pui1 = Pn — ksin(y,) — sign(e)y, 4)

Xn+1 = Xn + Sign(e)ﬁn+]’ (5)

where the population of a mode is proportional to the size
of the corresponding island. This is a pseudoclassical
[e = (k — 27r) — 0] rather than semiclassical (X — 0)
limit of the quantum dynamics characterized by the
Floquet operator of Eq. (2). We have introduced p =
pe/k (in an accelerating frame [14]) and k = ¢,|e|.
Classically, the system is globally chaotic for our parame-
ter regime. Figure 3 shows the pseudoclassical phase
spaces generated by iteration of Egs. (4) and (5) for the
experimentally investigated values of € = 27(T/T, ), —
1), and a range of ¢, When ¢, = 0.37 [Figs. 3(a) and
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FIG. 2 (color online). Numerical plots of A/2 against ¢,
with N = 20, for (a) T = 60.5 us and (c) T = 74.5 us. Plots
of the noninterfering population [ dgC(q)(lyé|* + |}1?)/4 for
(b) T =60.5 us and (d) T = 74.5 ws. Dashes demarcate the
experimental range of ¢,.
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3(d)], the island is substantially smaller for 7 = 74.5 us
than for T = 60.5 ws. For the average experimental value
of ¢, = 0.87 [Figs. 3(b) and 3(e)], the islands have both
grown to be about the same size. For ¢, = 1.57
[Figs. 3(c) and 3(f)], the island has shrunk dramatically
in the case of T = 74.5 us, while at T = 60.5 us the
island has not shrunk to the same extent. We therefore
conclude that the stable island representing the QAM is
much more robust to perturbations in the kicking strength
for T = 60.5 us than for T = 74.5 us. The fact that A
(and therefore f) remains large at the QAM momentum
for a significantly broader range of ¢, when T = 60.5 us
than for when 7 = 74.5 us, as shown in Fig. 2, matches
the observed greater stability of the island in the pseudo-
classical phase space for T = 60.5 us. This is consistent
with Peres’s identification of the behavior of the fidelity as
reflecting stability properties of the phase space in the
semiclassical limit [17], even though our experiment is in
a pseudoclassical regime, far from semiclassical.

The position of the islands in pseudoclassical phase
space in Fig. 3 indicates the region of the QAM’s spatial
localization. For T = 60.5 ws this is where there is zero
laser intensity, whereas when 7 = 74.5 us it is where the
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FIG. 3. Stroboscopic Poincaré sections determined by Egs. (4)

and (5) for T = 60.5 us (= € = —0.58), and for (a) ¢, =
0.357r, (b) the average experimental value 0.877, and (c) 1.57.
(d), (e), and (f) show corresponding plots for T = 74.5 us
(= € = 0.73). Units are dimensionless.
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FIG. 4 (color online). Numerical plots of cos(¢; + N6 )
against ¢, (N = 20) for (a) T = 60.5 us and (b) T = 74.5 us.
Crosses demarcate the experimental range of ¢,.

intensity, and hence phase shift, are maximal. As the
phase of the P, interference term in Eq. (4) depends on
the absolute difference between the potentials experi-
enced by |a) and |b), we expect it to depend strongly on
¢, for the momenta at which QAM are found when T =
74.5 s, but not when 7 = 60.5 ws. This is confirmed by
Figs. 4(a) and 4(b) where cos(¢p; + NS¢, + 0) is plotted
as a function of p and ¢, for constant 8 (set to O for
convenience) for T = 60.5 us and T = 74.5 us. At the
QAM momentum, the value of cos(¢p; + N6 ) at T =
60.5 ws is almost independent of ¢,, whereas at T =
74.5 us there is an approximate frequency doubling, rela-
tive to other momenta. This effect explains the presence
or absence of interference fringes in Fig. 1. For a single
value of ¢, the visibility of the fringes at both T =
60.5 us and T = 74.5 us is high, but Figs. 4(a) and 4(b)
show that integration over the experimental range of ¢,
causes a greater reduction in visibility at T = 74.5 us
thanat 7 = 60.5 us. At larger ¢, than in our experiment,
there is a breakdown of structure in plots of cos(¢; +
Né&¢,), coinciding with a falloff in A [see Figs. 2(a) and
2(c)]. As ¢ is determined numerically from complex
interference terms, however, one should be careful about
attaching significance to values of cos(¢; + N6¢,)
where A is close to zero.

In summary, we have performed a Ramsey-type inter-
ference experiment and thus demonstrated the coherence
of the production of quantum accelerator modes, and
hence their suitability for applications in atom interfer-
ometry. Numerically, we have found the accelerator
modes to correspond to regions of greater quantum stabil-
ity, as quantified by the fidelity. This is consistent with the
presence of stable regions in the phase space of a pseudo-
classical limit of 8-kicked accelerator dynamics, rather
than the globally chaotic behavior of the semiclassical
limit. These regions dictate the position of the accelerator
modes’ spatial localization, allowing us to explain the
lack of fringes for the accelerator mode at certain pulse
periods, due to the experimental range of kicking
strengths. Our investigation of coherence in quan-
tum accelerator modes has allowed observation of their
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quantum-stable dynamics in this classically chaotic
system.
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