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Cluster Growing Process and a Sequence of Magic Numbers
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We present a new theoretical framework for modeling the cluster growing process. Starting from the
initial tetrahedral cluster configuration, adding new atoms to the system, and absorbing its energy at
each step, we find cluster growing paths up to the cluster sizes of more than 100 atoms. We demonstrate
that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found.
Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With
its use we justify the magic number sequence for the clusters of noble gas atoms and compare it with
experimental observations.

DOI: 10.1103/PhysRevLett.90.053401 PACS numbers: 36.40.Qv, 36.40.Mr, 61.46.+w
These techniques are often based on the Monte Carlo
simulations.

The interaction potential between two atoms in the cluster
can, in principle, be arbitrary. In this work, we use the
It is well known that the sequence of cluster magic
numbers carries essential information about the
electronic and ionic structure of the cluster [1]. Under-
standing of the the cluster magic numbers is often equiva-
lent or nearly equivalent to the understanding of cluster
electronic and ionic structure. A good example of this
kind is the observation of the magic numbers in the mass
spectrum of sodium clusters [2]. In this case, the magic
numbers were explained by the delocalized electron shell
closings (see [3] and references therein). Another example
is the discovery of fullerenes, and, in particular, the C60

molecule [4], which was made by means of the carbon
clusters mass spectroscopy.

The formation of a sequence of cluster magic numbers
should be closely connected to the mechanisms of cluster
formation and growing. It is natural to expect that one can
explain the magic number sequence and find the most
stable cluster isomers by modeling mechanisms of cluster
assembling and growing. On the other hand, these mecha-
nisms are of interest on their own, and the correct se-
quence of the magic numbers found in such a simulation
can be considered as a proof of validity of the cluster
formation model.

The problem of magic clusters is closely connected to
the problem of searching for global minima on the cluster
multidimensional potential energy surface. The number
of local minima on the potential energy surface increases
exponentially with the growth cluster size and is esti-
mated to be of the order of 1043 for N � 100 [1]. Thus,
searching for global minima becomes an increasingly
difficult problem for large clusters. There are different
algorithms and methods of the global minimization,
which have been employed for the global minimization
of atomic cluster systems (see [1] and references therein).
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The algorithm that we describe in this Letter is based
on the dynamic searching for the most stable cluster
isomers in the cluster growing process. Our calculations
demonstrate that our approach is an efficient alternative to
the known techniques of the cluster global minimization.
The big advantage of our approach consists in the fact that
it allows one to study not just the optimized cluster geo-
metries, but also their formation mechanisms.

In the present work we approach the formulated prob-
lem in a simple, but general, form. In our simplest sce-
nario, we assume that atoms in a cluster are bound by
Lennard-Jones potentials and the cluster growing takes
place atom by atom. In this process, new atoms are placed
on the cluster surface in the middle of the cluster faces.
Then, all atoms in the system are allowed to move, while
the energy of the system is decreased. The motion of the
atoms is stopped when the energy minimum is reached.
The geometries and energies of all cluster isomers found
in this way are stored and analyzed. The most stable
cluster configuration (cluster isomer) is then used as a
starting configuration for the next step of the cluster
growing process.

Starting from the initial tetrahedral cluster configura-
tion and using the strategy described above, we have
analyzed cluster growing paths up to the cluster sizes of
more than 100 atoms. We have found that in this way
practically all known global minimum structures of the
Lennard-Jones clusters (see [1] and references therein)
can be determined, which proves that our method is
indeed an efficient alternative to other cluster global
optimization techniques such as the basin hopping algo-
rithm [1].

In our model we consider an atomic cluster as a group
of atoms that interact with each other by pairing forces.
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Lennard-Jones (LJ) potential,

U�r� � 4"f��=r�12 � ��=r�6g; (1)

where r is the interatomic distance, " is the depth of the
potential well (" > 0), and 21=6� is the pair bonding
length.

The constants in the potentials allow one to model
various types of clusters for which LJ pairing force
approximation is reasonable. The most natural systems
of this kind are the clusters consisting of noble gas atoms
Ne, Ar, Kr, Xe. The constants in the LJ potential appro-
priate for the noble gas atoms one can find in [5]; thus, for
Ne, Ar, Kr, and Xe, " � 3:6, 12:3, 17:2, and 24:3 meV,
respectively. The LJ forces are also appropriate for mod-
eling nuclear clusters consisting of alpha particles [6].
Note that for the LJ clusters it is always possible to choose
the coordinate scale so that � � 1. It makes all LJ cluster
systems scalable. They differ only by the choice of the
energy parameter " and the mass of a single constituent
(atom).

In our approach the atomic motion in the cluster is
described by the Newton equations with the LJ pairing
forces. The system of coupled equations for all atoms in
the cluster are solved numerically using the 4th order
Runge-Kutta method. The primary goal in this simulation
was to find the solutions of the equations that lead to the
stable cluster configurations and then to choose energeti-
cally the most favorable one. The choice of initial con-
ditions for the simulation and the algorithm for the
solution of this problem are described below.

Our cluster searching algorithm is constructed on the
idea that each minimum on the cluster potential energy
surface corresponds to the situation, when all the atoms
are located in their equilibrium positions. A minimum
can be found by allowing atoms to move, starting from a
certain initial cluster configuration, and by absorbing all
their kinetic energy in the most efficient way. If the
starting cluster configuration for N � 1 atoms has been
chosen on the basis of the global minimum structure for
N atoms, then it is natural to assume, and we prove this in
the present work, that the global minimum structure
for N � 1 atoms can be easily found. The success of
this procedure reflects the fact that in nature clusters
in their global minima often emerge, namely, in the
cluster growing process, which we simulate in such
calculation.

We have employed the following algorithm for the
kinetic energy absorption. At each step of the calculation
we consider the motion of one atom only, which under-
goes the action of the maximum force. At the point in
which the kinetic energy of the selected atom is maxi-
mum, we set the absolute value of its velocity to zero. This
point corresponds to the minimum of the potential well at
which the selected atom moves. When the selected atom
is brought to the equilibrium position, the next atom is
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selected to move and the procedure of the kinetic energy
absorption repeats. The calculation stops when all the
atoms are in equilibrium.

We have considered a number of scenarios of the clus-
ter growing on the basis of the developed algorithm for
finding the stable cluster configurations.

In the simplest scenario clusters of N � 1 atoms are
generated from the N-atomic clusters by adding one atom
to the system. In this case the initial conditions for the
simulation of �N � 1�-atomic clusters are obtained on the
basis of the chosen N-atomic cluster configuration by
calculating the coordinates of an extra atom added to
the system on a certain rule.We have probed the following
paths: the new atom can be added either (A1) to the
centers of mass of all the faces of the cluster (here the
cluster is considered as a polyhedron) or (A2) to the points
that are close to the centers of all the faces of the cluster,
located from both sides of the face on the perpendicular
to it, (A3) to the centers of mass of the faces laying on the
cluster surface.

The choice of the method of how to add atoms to the
system depends on the problem to be solved. The A1 and
A2 methods can be used for searching the most stable, i.e.,
energetically favorable, cluster configurations or for find-
ing cluster isomers with some other specific properties.
The A2 method leads to finding more cluster isomers than
the A1 one, but it takes more CPU time. The A3 method is
especially convenient for modeling the cluster growing
process which we focus on in this paper. Using this
method one can generate the cluster growing paths for
the most stable cluster isomers.

When considering the cluster growing process, new
atoms should be added to the system starting from the
initially chosen cluster configuration step by step until
the desired cluster size is reached. Each new step of the
cluster growing should be made with the use of the
methods A1–A3. The criteria for the cluster selection in
this process can be as follows: at every step (SE1) one of
the clusters with the minimum number of atoms is se-
lected, or (SE2) the cluster with the minimum energy
among the already found stable clusters of the maximum
size is selected, or (SE3) the cluster with the maximum
energy among the already found stable clusters of the
maximum size is selected.

Calculations performed with the use of the methods
described above show that often clusters of a higher
symmetry group possess relatively low energy. Thus, the
symmetric cluster configurations are often of particular
interest. The process of searching the symmetric cluster
configurations can be sped up significantly, if one per-
forms the cluster growing process with the imposed sym-
metry constraints. This means that for obtaining a
symmetric N atomic cluster isomer from the initially
chosen symmetric �N �M�-atomic configuration one
should add M atoms to the surface of this isomer
symmetrically.
053401-2
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Using our algorithms we have examined various paths
of the cluster growing process and determined the most
stable isomers up to the cluster sizes of more than 100
atoms. The binding energies per atom as a function of
cluster size for the calculated cluster chains are shown in
Fig. 1. In the inset of Fig. 1 we present the experimentally
measured abundance mass spectrum for the Ar clusters
at 77 K [7].

We have generated the chains of clusters based on the
icosahedral, octahedral, tetrahedral, and decahedral
symmetries with the use of the A1–A3 and SE1–SE3
methods. In a few particular cases for N > 70, we have
also used manual modifications of the starting cluster
geometries. In all our calculations we have used the
dimensionless form of the LJ potential, i.e., put � � 1.
Such a choice is the most universal. The potential constant
has been chosen as " � 1=12.

Figure 1 shows that the most stable clusters are ob-
tained on the basis of the icosahedral symmetry config-
urations with exceptions for N � 38, 75 � N � 77, and
N � 98. In these cases the octahedral, decahedral, and
tetrahedral cluster symmetry becomes more favorable,
respectively.

The main trend of the energy curves plotted in Fig. 1
can be understood on the basis of the liquid drop model,
according to which the cluster energy is the sum of the
volume and the surface energy contributions:

EN � ��VN � �SN2=3 � �RN1=3: (2)

Here the first and the second terms describe the volume
and the surface cluster energy correspondingly. The third
term is the cluster energy arising due to the curvature of
the cluster surface. Choosing constants in (2) as �V �
0:717 03, �S � 1:293 02, and �R � 0:567 57, one can fit
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FIG. 1 (color online). Binding energy per atom for LJ clusters
as a function of cluster size calculated for the cluster chains
based on the icosahedral, octahedral, tetrahedral, and decahe-
dral symmetry. In the inset we present the experimentally
measured abundance mass spectrum for the Ar clusters
at 77 K [7]
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the global energy minimum curve plotted in Fig. 1 with
the accuracy less than 1%. The deviations of the energy
curves calculated for various chains of cluster isomers
from the liquid drop model (2) are plotted in Fig. 2. The
curves for the icosahedral and the global energy mini-
mum cluster chains go very close with each other, and the
peaks on these dependences indicate the increased stabil-
ity of the corresponding magic clusters. The ratio between
the volume and surface energies in (2) can be character-
ized by the dimensionless parameter � � �V=�S, being
equal in our case to � � 0:5545.

The dependence of the binding energies per atom for
the most stable cluster configurations on N allows one to
generate the sequence of the cluster magic numbers. In the
inset of Fig. 2 we plot the second derivatives �E2

n for the
chain of icosahedral isomers. We compare the obtained
dependence with the experimentally measured abundance
mass spectrum for the Ar clusters at 77 K [7] (see inset of
Fig. 1) and establish the striking correspondence of the
peaks in the measured mass spectrum with those in the
�E2

n dependence. Indeed, the magic numbers determined
from �2EN are in a very good agreement with the num-
bers experimentally measured for the Ar and Xe clusters:
13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, 61, 64, 71, 74, 81,
87, 91, 101, 109, 116, 119, 124, 131, 136, 147 [7]. The most
prominent peaks in this sequence 13, 55, and 147 corre-
spond to the closed icosahedral shells, while other num-
bers correspond to the filling of various parts of the
isosahedral shell.

The connection between the second derivatives �2EN
and the peaks in the abundance mass spectrum of clusters
one can understand using the following simple model. Let
us assume that the mass spectrum of clusters is formed in
the evaporation process. This means that changing the
number of clusters, nN , of the size N in the cluster
ensemble takes place due to the evaporation of an atom
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FIG. 2 (color online). Energy curve deviations from the
liquid drop model (2) calculated for various cluster isomer
chains. In the inset we plot the second derivative �2EN calcu-
lated for the icosahedral cluster isomer chain.
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FIG. 3 (color online). Geometries of the magic LJ clusters.
The labels indicate the cluster size and the cluster point
symmetry group.
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by the clusters of the size N and N � 1, i.e., �nN 	
nN�1WN�1!N � nNWN!N�1, where the evaporation prob-
abilities are proportional to WN�1!N 	 e��EN�E1�EN�1�=kT

and WN!N�1 	 e��EN�1�E1�EN�=kT . Here T is the cluster
temperature, and k is the Boltzmann constant. In our
model E1 � 0, so after simple transformations the equa-
tion for �nN reads as �nN 	 nN�1e

��EN�EN�1�=kT�1�
nN
nN�1

e��EN�1�2EN�EN�1�=kT�. Let us now estimate the relative
abundances in the mass spectrum for argon clusters for
temperatures about 100 K. The exponent, e��EN�EN�1�=kT ,
influences the absolute value of �nN . This factor becomes
exponentially small at kT � EN � EN�1, which for the
Ar clusters means T � 800 K, because h�EAr

N i �
0:071 eV	 800 K. The small value of this factor results
in the growth of the characteristic period of the evolution
of nN with time. The factor in the brackets determines the
relative cluster abundances. Indeed, its positive value for
certain N leads to the growth of the corresponding clus-
ters in the system, while the negative value of the factor
leads to the opposite behavior. The factor in the brackets is
characterized by �2

NEN � EN�1 � 2EN � EN�1, which
is for the Ar clusters hj�2

Nji � 0:008 eV	 90 K. Thus,
for temperatures T * 90 K the exponent in the brackets
can be expanded. In this case one derives �nN 	
nNe

��EN�EN�1�=kT �2EN
kT . Here we assumed that nN�1 	

nN . This equation demonstrates that positive values of
�2EN lead to the enhanced abundance of the correspond-
ing clusters.

In Fig. 3, we plot images of the magic clusters up to
N � 71. For N � 32 and N � 34, we present the icosahe-
dral isomer and the one possessing the global energy
minimum. We also plot the image of the octahedral
N � 38 cluster, which is found to be more stable than
the clusters from the icosahedral chain. Experimentally
N � 38 is not found to be the magic cluster, although it is
the global minimum cluster, being magic for the octahe-
dral cluster chain (see Figs. 1 and 2). This fact can be
understood if one takes into account that different sym-
metry cluster chains are formed independently and the
transition of clusters from one chain to another at certain
N is not possible. It is clear from the binding energy
analysis that the icosahedral chain of clusters should be
dominating. In experiments, clusters of the icosahedral
chain mask clusters of other symmetry chains even in the
situations when these other clusters are energetically
more favorable, like it occurs for N � 38.

In this paper we have discussed the classical models for
the cluster growing process, but our ideas can easily be
generalized on the quantum case and be applied to the
cluster systems with different than LJ type of the inter-
053401-4
atomic interaction. It would be interesting to see to what
extent the parameters of interatomic interaction can in-
fluence the cluster growing process and the corresponding
sequence of magic numbers or whether the crystallization
in the nuclear matter consisting of alpha particles and/or
nucleons is possible. Studying cluster thermodynamic
characteristics with the use of the developed technique
is another interesting problem which is left opened for
future considerations.
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