
P H Y S I C A L R E V I E W L E T T E R S week ending
7 FEBRUARY 2003VOLUME 90, NUMBER 5
Recombination of Three Ultracold Fermionic Atoms
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Three-body recombination of identical, spin-polarized fermionic atoms in the ultracold limit is
investigated using model interactions. The mechanisms for recombination are parametrized by the
‘‘scattering volume’’ Vp and described in the framework of the adiabatic hyperspherical representation.
We have calculated the recombination rate K3 as a function of Vp and have found K3 / jVpj8=3 for small
jVpj. Recombination near a two-body Feshbach resonance can thus be significant.

DOI: 10.1103/PhysRevLett.90.053202 PACS numbers: 34.50.–s, 03.75.Hh, 03.75.Kk, 34.10.+x
Even though recombination of identical fermions is
suppressed at ultracold temperatures by the Pauli prin-

the recombination rate K3 as opposed to the as scaling
for bosons.
Recently, the quantum degenerate regime was attained
in ultracold gases of fermionic atoms such as 40K [1] and
6Li [2,3]. Part of the motivation for these experiments is
to observe a pairing of fermions, leading to a superfluid
state. One important factor limiting the achievable den-
sity in these degenerate Fermi gases of trapped atoms is
the loss of atoms through three-body recombination. Such
losses occur when three atoms scatter to form a molecular
bound state and a third atom —K�K�K!K2�K, for
instance. The kinetic energy of the final state particles
causes them to escape from the trapping potential.

While ultracold three-body recombination of identical,
spin-polarized bosons has been theoretically studied be-
cause of its importance for Bose-Einstein condensates,
recombination of identical fermions has not yet been
considered. For bosons, Fedichev et al. [4] predicted
that the recombination rate K3 grows with the two-body
s-wave scattering length as, namely, K3 / a

4
s , for as > 0.

This scaling was later confirmed by Nielsen and Macek
[5] who also pointed out that it should hold for nega-
tive as. The a4s scaling law for both signs of as was indeed
obtained by Esry et al. [6], Bedaque et al. [7], and Braaten
and Hammer [8].

In the case of fermions, however, the Pauli exclusion
principle prohibits s-wave scattering of atoms in identical
spin states, thus leaving only p-wave collisions. The
relevant low-energy scattering parameter in this case is
the two-body p-wave scattering volume defined as

Vp � � lim
k!0

tan	p�k�

k3
; (1)

where 	p�k� is the p-wave scattering phase shift and k is
the wave number. The scattering volume Vp is related to
the p-wave scattering length ap (see, for instance,
Ref. [9]) by Vp � a3p. We choose Vp, rather than ap, as
the parameter to characterize the three-body recombina-
tion of fermions since an artificial nonanalyticity is in-
troduced into ap when taking the cube root of the
quantity in the right-hand side of Eq. (1).
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ciple, it does not vanish. In fact, it has been shown that the
rate is proportional to E2 at low collision energies [10].
While this rate remains negligible under typical experi-
mental conditions, it can become substantial near a Fesh-
bach resonance. The E2 threshold law no longer applies,
and the recombination rate tends to the limit imposed by
unitarity — often comparable to or larger than the rates
for boson systems. Feshbach resonances are, of course,
extremely useful tools for the experimentalist, so under-
standing the behavior near such a resonance is crucial. So
far, such resonances have been observed, for example, in
systems of 40K [11] and 6Li [2] as well as for other alkali
species in Bose-Einstein condensation experiments (see,
for example, Ref. [12]).

This Letter treats the three-body recombination of
identical, spin-polarized fermions in the ultracold limit.
Our primary goal is to trace out the qualitative behav-
ior of the recombination rate as a function of Vp. We
expect that Vp is a main parameter controlling the ultra-
cold fermion recombination rate just as the s-wave scat-
tering length has been shown to control the boson
recombination rate [4–8]. In both cases, a second length
scale r0 is needed to complete the description. We exam-
ine the recombination rate K3 as a function of Vp by
numerically solving the three-body scattering problem.
First of all, since the atoms are spin polarized and
thus in a completely symmetric spin state, the spatial
wave function must be completely antisymmetric in or-
der to satisfy the Pauli principle. This fact, combined with
the generalization of Wigner’s threshold law to K3, shows
that the J� � 1� symmetry dominates at threshold,
where J is the total orbital angular momentum and � is
the parity of the system. It follows that the recombination
rate depends on the collision energy E as E2 near thresh-
old [10]. (The same analysis applied to the boson case
yields the familiar result that the recombination rate is
constant at threshold due to the 0� symmetry.) There-
fore, we consider only the 1� case. Dimensional analysis,
together with this E2 law, suggests a jVpj8=3 scaling of
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FIG. 1. The lowest 12 adiabatic hyperspherical potential
curves for three spin-polarized fermions with Vp � �1:25

105 a:u:3 using the sech2 potential with r0 � 15 a:u: The inset
shows the potential barrier in the three-body entrance channel,
which plays a crucial role in the recombination process.
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The interaction potential used is a sum of triplet two-
body potentials, i.e., V � v�r12� � v�r23� � v�r31�. This
choice is appropriate for fully spin-polarized atoms that
collide in a quartet electronic state. For simplicity, we
model the two-body potential as either

vsech�rij� �
D

cosh2�
rij
r0
�

or vvdW�rij� �
D

1� �
rij
r0
�6
: (2)

The former potential has proven convenient in recombi-
nation calculations while the latter has a more physical
van der Waal’s tail withC6 � r60D. Ideally, the results will
not depend on the particular potential used in the ultra-
cold limit. The parameter r0 controls the range of the
potential. The coefficient D, representing the potential
depth, is treated as an adjustable parameter that permits
us to control the scattering volume Vp, thus mimicking
the tuning ability of an external magnetic field.

The two-body p-wave scattering volume Vp behaves
much like the s-wave scattering length as a function of
the parameterD, displaying a tangentlike structure. AsD
becomes more negative and the potential becomes more
attractive, the scattering volume passes through a pole
and changes sign each time the potential becomes deep
enough to support one additional p-wave bound state. For
simplicity, we consider the parameter range for which
there exists only one two-body bound state.

The details of the theoretical methods we employ are
more completely discussed in Ref. [13], so only a brief
outline is given here. We use the adiabatic hyperspherical
representation with modified Smith-Whitten coordinates.
Simply put, these coordinates transform the six relative
coordinates in the center of mass frame to a single length
coordinate, the hyperradius R, and five hyperangles.
These coordinates also allow us to easily impose the
correct permutation symmetry on the wave functions.
Solution of the adiabatic equation yields adiabatic hyper-
spherical potential curves and channel functions. The
coupled hyperradial equations are then solved using an
R-matrix propagation method.

The adiabatic hyperspherical representation reduces
the three-body collision to dynamics on coupled hyper-
radial adiabatic potentials. These potentials bear a strong
resemblance to standard molecular Born-Oppenheimer
potentials (see Fig. 1) and can be interpreted in much
the same way. The lowest potential curve in the figure, for
instance, correlates to a bound molecule and a free atom
far away—labeled generically as X2 � X. Because the
atoms are identical fermions and the system is in the 1�

state, the free atom has unit angular momentum relative
to the molecule and the potential has a centrifugal barrier
(see inset). Further, because we consider only the 1�

symmetry due to its dominance at threshold, the free
atom must also be in a p wave relative to the center of
mass of the molecule. All of the other curves in Fig. 1
correlate to three free atoms, X� X� X. In fact, there
are an infinite number of potential curves associated with
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three-body continuum channels and approach the three-
body breakup threshold U � 0 asymptotically.

Three-body recombination can be seen as a transition
from one three-body continuum channel to the recombi-
nation channel, driven by nonadiabatic coupling. Quali-
tatively, the adiabatic potentials shown in Fig. 1 display
analogous behavior, as functions of Vp, as the adiabatic
potentials for bosons show as functions of as [6,14]. For
both systems, the entrance channel goes from being
strongly repulsive for positive Vp and as to having an
attractive well behind a potential barrier for negative
values. The entrance channel for the fermions is generally
more repulsive, however, than the addition of a simple
J � 1 centrifugal potential term to the boson curves
would give due to permutation symmetry considerations
[10]. The recombination channels are also very similar,
although it should be noted that there is no Efimov effect
[15] for fermions in the limit jVpj ! 1. Efimov physics
plays a key role in the interpretation of the ultracold
recombination of bosons [6].

The primary difference between fermion and boson
systems lies in the nonadiabatic coupling. While it is
similar for negative Vp and as, for positive values the
similarities end. Where the coupling strength for bosons
shows a definite peak whose position increases linearly in
as, the coupling strength for fermions remains peaked at
small R with a slowly decaying shoulder whose extent
grows in proportion to V1=3

p . For negative values of Vp, we
thus expect that the fermion recombination rate can show
resonant enhancement due to three-body shape resonan-
ces just as for bosons, but we do not expect an infinite
series of such resonances since this was a consequence of
the Efimov effect. We have not, however, seen evidence of
such resonances as Vp ! �1 in our calculations.

To calculate the three-body recombination rate, we
solve the hyperradial equations [13] for potentials such
053202-2
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as those shown in Fig. 1. The numerical hyperradial wave
functions are matched to the appropriate Bessel functions
based upon the known form of the long-range potentials
[13]. The S matrix is obtained and the generalized cross
section for three-body recombination is calculated:

� �
192�2J� 1��2

k5
X
f;�

jSf;�j2 �
576�2

k5
X
f;�

jSf;�j2: (3)

Here k �
������������������
2�E= �h2

p
is the hyperspherical wave number in

the incident three-body continuum channel, and the in-
dices � and f label initial three-body continuum and final
recombination channels, respectively. As it turns out, the
numerical prefactor in Eq. (3) — which is determined by
permutation symmetry — is the same as for three identi-
cal bosons [6] (recall that we are considering the J� � 1�

symmetry). The event rate constant per atomic triad is
then defined simply as K3 �

�hk
� �. This quantity is related

to the atom-loss rate constant L3 by L3 � 3K3=6 [6].
Because the rate depends strongly on the collision

energy in the ultracold regime, it must be thermally
averaged in order to compare with experimental data.
Following Ref. [16], we have derived the thermally aver-
aged recombination rate constant to be

hK3i�T� �
2

�kBT�3

Z
K3�E�E

2e�E=kBTdE: (4)

We show in Fig. 2 hK3i as a function of Vp for a tem-
perature of 2 �K. Specifically, Fig. 2 shows �K3=r

4
0�

3=8

versus Vp=r30. We plot K3=8
3 to best reveal whether the

predicted jVpj
8=3 scaling actually holds; the factors of r0

were included based on general arguments of length scale
invariance of the Schrödinger equation. Because the two-
body potentials in Eq. (2) depend only on the combination
rij=r0, r0 can be defined to be the new length scale for
both the two-body and three-body systems. This new
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FIG. 2. The recombination rate K3 as a function of Vp for
vsech (no symbols) and vvdW (diamonds) from Eq. (2) with r0 �
15 a:u: The solid lines correspond to the thermally averaged
rate at T � 2 �K and the dashed lines to the energy-dependent
rate at E � 2 �K. The inset focuses on the region with small
jVpj showing a Stückelberg oscillation.
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length scale implies multiplying energies and tempera-
tures by r20, lengths by r�1

0 , and the rate by r�4
0 . The

energy parameter D in our model — which controls
Vp— is independent of the length scale, and so its scaled
counterpart, r20D, can be used to control Vp=r30. Having
calculated the rate as a function of Vp and energy for a
fixed r0, we can thus obtain the rate for any other value
of r0 by means of the above scaling. The key is that, at a
fixed laboratory collision energy (or temperature), chang-
ing r0 effectively changes the range of the two-body
potential, and the new rate corresponds to the rate at
the scaled energy r20E. One has to be careful, of course,
to track the simultaneous change in the scaled Vp.

The solid lines in the figure show the thermally aver-
aged rates hK3i�T�, while the dashed lines show the
energy-dependent rates K3�E�. The symbols for the
sech2 potential, vsech, are omitted for clarity since
the rate was obtained on a relatively dense set of Vp
values. The diamonds denote the rates resulting from
vvdW. The rates from the two potentials — which are
qualitatively very different — show reasonable quantita-
tive agreement, especially for the more experimentally
relevant thermally averaged rate. The poorest agreement
occurs at small jVpj where the rates are also small. If,
however, the rate curve for either potential with a differ-
ent value of r0 and the same lab energy E were plotted
here, it would look systematically different, although
qualitatively similar. This apparent dependence on the
two-body potential would seem to argue against a ‘‘uni-
versal’’ curve as was found for bosons [5–8]. Based on the
above length scaling arguments, though, it is clear that
the scaled rate curves — at the same scaled energy — are
what should be compared between different potentials
and would thus come closest to a universal curve.

Figure 2 shows that the jVpj
8=3 scaling does indeed

hold quite well for jVpj=r
3
0 less than roughly 2500 for

K3�E�, but for hK3i�T� it holds only over the region
jVpj=r

3
0 below approximately 800. Since this scaling is

based on the threshold behavior of the rate, it is not
surprising that it breaks down sooner for the thermally
averaged rate given that the averaging procedure includes
rates from higher energies. The fact that the scaling
breaks down for K3�E� is an indication that the fixed
collision energy is no longer in the threshold regime.

For large positive scattering volumes Vp, the collision
energy eventually becomes large compared to the dimer
binding energy, and K3 increases more slowly than the
jVpj

8=3 scaling law. Recalling that for negative Vp there is
a barrier in the initial adiabatic hyperspherical potential,
the breakdown in the scaling law comes when the barrier
sinks below the collision energy at large negative Vp. The
fact that the recombination rate increases more rapidly
than the scaling law with increasing jVpj simply reflects
the more ready tunneling through the barrier. The rate
continues to increase until it reaches the limit imposed by
unitarity, namely (in SI units),
053202-3



196 198 200 202 204
B (G)

10
−8

10
−27

10
−26

10
−25

10
−24

10
−23

10
−22

K
3 (

cm
6 /s

)

|mL|=1 mL=0

FIG. 3. The theoretical rates for each molecular orbital an-
gular momenta mL (dashed lines), the total rate obtained from
their weighted average (solid line), and the experimental rate
[17] (filled circles) are plotted as functions of the magnetic field
strength B. Note that r0 � 60 a:u: was used to give the best fit.
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Kmax
3 �

�h
�
576�2

k4
�

�h5

m3

144
���
3

p
�2

E2 : (5)

This value is obtained from Eq. (3) by assuming that the
recombination predominantly comes from the lowest con-
tinuum channel with unit probability. We expect that this
limit will be reached when jVpj becomes large enough
that the barrier in the three-body entrance channel is
lower than the collision energy. For the conditions of
Fig. 2, this value of Vp is well off the scale of the plot.

Interestingly, the inset of Fig. 2 shows a small peak in
the rate located at about Vp=r30 � �60. This peak is a
constructive interference between two indistinguishable
pathways — a Stückelberg oscillation. The interference
causes the peak strength to oscillate with energy.

In Fig. 3, we compare our calculations with experimen-
tal measurements [17] of the recombination rate of three
40K atoms all in the j9=2;�7=2i spin state near a p-wave
two-body Feshbach resonance. The theoretical rates are
calculated at T � 2:5 �K, while the experimental tem-
perature varies between 2 and 3 �K. The figure shows the
rates as functions of the magnetic field strength B. Since
the present calculations do not include the magnetic field,
the rates shown were obtained by using two-body scatter-
ing data from Ref. [17] to convert B to Vp. The three-body
rates could then be taken from Fig. 2.

The Feshbach resonance lies at roughly B0 � 199 G,
but the peak is split according to the projection of the
molecular orbital angular momentum mL on the molecu-
lar axis [17]. We have assumed that these states are
statistically populated. The agreement near the resonance
is generally better than away from it where the experi-
mental assumption of purely three-body loss in determin-
ing the rate coefficient likely breaks down. For all B,
though, the theoretical curve lies below the experimental
points. This discrepancy is not surprising given that we
included only a single partial wave (1�) in our calcu-
lation. While this symmetry controls the behavior at
threshold, it is not necessarily dominant near the reso-
nant peak. In fact, limited explorations have demon-
strated that other J� can be comparable to 1� at the
resonance peak. The contributions from these higher par-
tial waves accumulate quickly since thermal averaging,
from Eq. (4), gives an extra factor of roughly �J� 2�!
Finally, although we fully expect that our use of model
potentials is sufficient for ultracold collisions, we have
not yet ruled it out as a possible source of the discrepancy
in Fig. 3.

In summary, we have investigated ultracold three-body
recombination of identical spin-polarized fermions and
have numerically calculated the recombination rate as a
function of the scattering volume. In particular, we have
shown that, while the Pauli principle does suppress fer-
mion recombination in general, it does not near a two-
body Feshbach resonance. Moreover, these qualitative
conclusions should apply generally to ultracold recombi-
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nation of any spin-polarized fermion system. This is the
first such study that we are aware of, and much remains to
be understood about these systems. Moreover, with some
slight modifications to our numerical method, it is pos-
sible to treat systems with only two identical particles.
Three-body recombination of such systems plays an im-
portant role in experiments on mixed-spin state Fermi
gases and mixed Bose-Fermi gases.
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