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Classical Correlations and Entanglement in Quantum Measurements
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We analyze a quantum measurement where the apparatus is initially in a mixed state. We show that
the amount of information gained in a measurement is not equal to the amount of entanglement between
the system and the apparatus, but is instead equal to the degree of classical correlations between the two.
As a consequence, we derive an uncertainty-like expression relating the information gain in the
measurement and the initial mixedness of the apparatus. Final entanglement between the environment
and the apparatus is also shown to be relevant for the efficiency of the measurement.
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[2] and the first fully quantum analysis was due to
Von Neumann [3].


AB with two subsystems A and B is given by
S�
AB� � �Tr�
AB log
AB� and theVon Neumann mutual
Any measurement can be modeled as an establishment
of correlations between two random variables: one ran-
dom variable represents the values of the quantity per-
taining to the system to be measured, while the other
random variable represents the states of the apparatus
used to measure the system [1]. It is by looking at the
states of the apparatus, and discriminating them, that we
infer the states of the system. Looking at the apparatus, of
course, is another measurement process itself, which
correlates our mental states (presumably another random
variable) with those of the apparatus, so that indirectly
we become correlated with the system as well. It is at this
point that we can say that we have gained a certain
amount of information about the system. This description
of the measurement process is true both in classical and
quantum physics. (Note that in this way there is no more
mystery in the ‘‘quantum state collapse’’ than there is in
the corresponding classical measurement.) The differ-
ence between the two lies in the way we represent states
of systems and the way we represent their mutual inter-
action and evolution. Classically, physical states of an
n-dimensional system are vectors in a real n dimensional
vector space whose elements are various occupational
probabilities for the states. The evolution of a classical
system is in general some stochastic map acting on this
vector space. Quantum mechanically, on the other
hand, states are in general represented using density
matrices, while the evolution is a completely positive,
trace preserving transformation acting on these matrices.
Using this representation, classical physics becomes a
limiting case of quantum mechanics when the density
matrices are strictly diagonal in one and the same fixed
basis and the completely positive map then becomes the
stochastic map. Because of this fact, it is enough to
analyze properties of quantum systems and quantum
evolutions and all the results are automatically applicable
to classical physics when we restrict ourselves to the
diagonal density operators only. A comprehensive survey
of major papers on quantum measurement can be found in
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In this Letter, we analyze a quantum measurement
when the apparatus is ‘‘fuzzy,’’ i.e., it is initially in a
mixed state. Our approach is entropic in character and
is therefore closest in spirit to that of Lindblad [4]. We
show that the amount of information gained via the
apparatus is proportional to the classical correlations
between the systems and the apparatus, rather than the
amount of entanglement between them. We then derive an
uncertainty-like expression which says that the sum of
the information gained in the measurement and the mix-
edness of the apparatus (quantified by the Von Neumann
entropy [3]) is bounded from the above by logN, where N
is the dimension of the apparatus. Our analysis builds on
recent results in quantum information theory concerning
quantification of entanglement in bi- [5,6] and tripartite
systems [7] and separating classical and quantum corre-
lations [8]. Quantum information theory has mainly been
developed to understand computation and communication
supported by quantum systems, but this knowledge can
now be applied back to quantum mechanics to study its
foundations from a new perspective.

We first review the existing measures of entangled and
total correlations [9]. In classical information theory, the
Shannon entropy, H�X� � H�p� � �

P
i pi logpi, is used

to quantify the information in a random variable, X, that
contains states xi with probabilities pi [10]. In the quan-
tum context, the results of a projective measurement fEyg
on a state represented by a density matrix, 
, comprise a
probability distribution py � Tr�Ey
�. Von Neumann
showed that the lowest entropy of any of these probability
distributions generated from the state 
 was achieved by
the probability distribution composed of the eigenvalues
of the state, � � f�ig [3]. This probability distribution
would arise from a projective measurement onto the
state’s eigenvectors. The Von Neumann entropy is then
given by S�
� � �Tr�
 log
� � H���. The quantum
relative entropy of a state 
 with respect to another
state  is defined as S�
jj� � �S�
� � Tr�
 log�.
The joint entropy S�
AB� for a composite system
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information between the two subsystems is defined as
I�
AB� � S�
A� 	 S�
B� � S�
AB�. The mutual informa-
tion is the relative entropy between 
AB and 
A 
 
B, and
is used to measure the total correlations between the two
subsystems. The entanglement of a bipartite quantum
state 
AB may be measured by how distinguishable it is
from the ‘‘nearest’’ separable state. Relative entropy of
entanglement, ERE�
AB� � minAB2D S�
ABjjAB�, has
been shown to be a useful measure of entanglement (D
is the set of all separable or disentangled states) [5]. Note
that ERE�
AB� � I�
AB�, by definition of ERE�
AB�, since
the mutual information is also the relative entropy be-
tween 
AB and a completely disentangled state. There are
other ways of measuring the entanglement of a bipartite
quantum state [9], but they can all be unified under the
formalism of relative entropy [6]. An advantage of relative
entropy is that it can be generalized to any number of
subsystems, a property that will be useful in understand-
ing the measurement process when the environment is
also present. The relative entropy will be used exclusively
throughout to quantify entanglement. We stress that
all the measures used here are entropic in nature, which
means that they are generally attainable only asymptoti-
cally. The advantage of using entropic measures is that
our results will be universally valid, although they
will almost always be overestimates in the finite-case
scenario.

Recently we have suggested that correlations in a state

AB can also be split into two parts, the quantum and the
classical part [8] (see also [11,12] for alternative ap-
proaches). The classical part is seen as the amount of
information about one subsystem, say A, that can be
obtained by performing a measurement on the other
subsystem, B. The resulting measure is the difference
between the initial and the residual entropy [8]:
CB�
AB� � maxBy

i Bi
S�
A� �

P
i piS�
i

A�, where By
i Bi is a

positive operator valued measure performed on the sub-
system B and 
i

A � trB�Bi
ABBy
i �=trAB�Bi
ABBy

i � is the
remaining state of A after obtaining the outcome i on B.
Alternatively, CA�
AB� � maxAy

i Ai
S�
B� �

P
i piS�


i
B� if

the measurement is performed on subsystem A instead of
on B. Clearly CA�
AB� � CB�
AB� for all states 
AB such
that S�
A� � S�
B� (e.g., pure states). This measure is a
natural generalization of the classical mutual informa-
tion, which is the difference in uncertainty about the
subsystem B (A) before and after a measurement on the
correlated subsystem A (B). Note the similarity of
the definition to the Holevo bound which measures the
capacity of quantum states for classical communication
[13]. The following example provides an illustration of
this and will be the key to our discussion of the quantum
measurement. Consider a bipartite separable state of the
form 
AB �

P
i pijiihijA 
 
i

B, where fjiig are orthonor-
mal states of subsystem A. Clearly the entanglement of
this state is zero. The best measurement that Alice can
make to gain information about Bob’s subsystem is a
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projective measurement onto the states fjiig of subsystem
A. Therefore the classical correlations are given by
CA�
AB� � S�
B� �

P
i piS�
i

B�, which is, for this state,
equal to the mutual information I�
AB�. This is to be
expected since there are no entangled correlations and
so the total correlations between A and B should be equal
to the classical correlations. This measure of classical
correlations has other important properties such as
C�
AB� � 0 if and only if 
AB � 
A 
 
B; it is also
invariant under local unitary transformations and non-
increasing under any general local operations [8].

Let us now introduce the general framework for a
quantum measurement (for a special case, see [14]). We
have a system in the state j�i �

P
i aijii, and an appara-

tus in the state 
 �
P

i rijriihrij in the eigenbasis. The
purpose of a measurement is to correlate the system with
the apparatus so that we can extract the information about
the state jji of the system. In a perfect measurement, by
looking at the apparatus we can unambiguously identify
the state of the system. Therefore, when the system is in
the state jji we would like the apparatus to be in the state

j, such that 
i
j � 0, i.e., different states of the appa-
ratus lie in orthogonal subspaces and can be discrimi-
nated with a unit efficiency. If this condition is not
fulfilled, which is frequently the case, then the measure-
ment is imperfect and the amount of information
obtained is not maximal (this is what defines an ‘‘imper-
fect measurement’’). We now compute the amount of
information gained in general and show that it is more
appropriately identified with the classical rather than
quantum correlations between the system and the appa-
ratus. Suppose that the measurement transformation
is given by a unitary operator, U, acting on both the
system and the apparatus, such that U�
 
 jiihjj�Uy �

ij 
 jiihjj, where we assume that the measurement trans-
formation acts such that the state jrkijli of the apparatus
and the system, respectively, is transformed into the state
j~rrklijli, such that the states of the apparatus correspond-
ing to different system states are orthogonal h~rrijj~rriki �
�jk. This particular interaction is chosen so that in
the special case of the pure apparatus we obtain
Von Neumman’s (and Everett’s) analysis. We see that the
measurement is such that the new apparatus state de-
pends on the state of the system. This is exactly how
correlations between the two are established. Then, the
initial state is transformed into 
f �

P
ij aia�

j
ij 

jiihjj �

P
i jaij

2
ii 
 jiihij 	
P

i�j aia
�
j
ij 
 jiihjj. The

first term on the right-hand side indicates how much
information this measurement carries. We will now
measure the apparatus and try to distinguish the states

ii to the best of our ability. Once we confirm that the
apparatus is in the state 
jj, then we can infer that the
system is in the state jji. The amount of information about
the state of the apparatus (and hence the state of the
system), Im, is given by the well-known Holevo
bound [13]:
050401-2
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Im � S
�X

i

jaij
2
ii

�
�

X
i

jaij
2S�
ii�: (1)

As we have seen, this quantity is also equal to the amount
of classical correlations between the system and the ap-
paratus in the state 
0

f �
P

i jaij
2
ii 
 jiihij, which is, in

this case, the same as theVon Neumann mutual informa-
tion between the two. Note that this state is only classi-
cally correlated and there is no entanglement involved.
The amount of entanglement in the state 
f, on the other
hand, will in general be nonzero. This may be difficult to
calculate. However, we can provide lower and upper
bounds. The lower bound on the entanglement between
the system and the apparatus is

E�
f� � S
�X

i

jaij
2
ii

�
� S�
f�

� S
�X

i

jaij
2
ii

�
� S�
� � Im: (2)

[Note that here S�
� � S�
ii� for all i by definition of
measurement interaction.] Therefore, the entanglement
between the system and the apparatus is larger than or
equal to the classical correlations between the two which
quantify the amount of information that the measurement
carries. So, this shows that the information in a quantum
measurement is correctly identified with the classical
correlations between the apparatus and the system rather
than the entanglement or the mutual information between
the two in the final state, 
f. Only in the limiting case of
the pure apparatus do we have that the amount of infor-
mation in the measurement is equal to the entanglement,
which becomes the same as the classical correlations,
while the sum of the quantum and classical correlations
is then equal to the mutual information in the state.

We can recast this relationship in the form of an ‘‘un-
certainty relation’’ between the initial mixedness of the
apparatus and the amount of information gained. So,
from the fact that Im � S�

P
i jaij

2
ii� � S�
�, we have
that

Im 	 S�
� � S
�X

i

jaij
2
ii

�
� logN; (3)

where N is the dimension of the apparatus. Thus we see
that the sum of the initial mixedness of the apparatus and
the amount of information the measurement obtains is
always smaller than a given fixed value: the larger S�
�,
the smaller Im. When 
 is maximally mixed [and there-
fore S�
� � logN], then no information can be extracted
from the measurement. Note that this relation is different
to the usual ‘‘information versus disturbance’’ law in a
quantum measurement as well as to the usual entropic
uncertainty relations of incompatible observables. Every
measurement that extracts information from a quantum
system also disturbs the state, and without this distur-
bance there would be no information gain possible. The
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initial state of the system in our above scenario wasP
i aijii, while the final state is a mixture of the formP
i jaij

2jiihij. The disturbance to the state can be mea-
sured as a distance between the final and the initial state.
We choose the relative entropy to quantify this difference.
So, while the information in the measurement is given by
Im, the disturbance is D � S�j�ih�jjj

P
i jaij

2jiihij� �
�
P

i jaij
2 logjaij

2, which is the same as the maximum
amount of information possible from this measurement.
So, the measurement described above always maximally
disturbs the state, and the reason why this does not lead to
the maximum information gain is because the apparatus
state is mixed. The system could be disturbed less by
adjusting the overlap between the states of the apparatus
j~rriji, so that they are not orthogonal to each other. In
general we can require that h~rrijj~rriki � ajk, such that
jajkj < 1. We will not treat this case here: it is mathe-
matically more demanding, but does not illuminate the
measurement issue any better. Note also that a question
may be raised as to why we consider the interaction
between the apparatus and system to be unitary and not
of a more general kind (a completely positive map as in,
for example [9]). The reason is that any such interaction
can be represented by a unitary transformation [9] and
our analysis then also applies (although the resulting
effective measurement would in general be less efficient
than the one performed unitarily).

In order to show that some form of entanglement is still
important (albeit not the one between the system and the
apparatus) we revisit the same measurement scenario, but
from the ‘‘higher Hilbert space perspective.’’ This is done
by adding the environment to the apparatus so that the
joint state is pure, j�EAi. We briefly note that our treat-
ment differs from the usual ‘‘environment induced col-
lapse’’ and decoherence as in, for example, [15,16]. In our
case, the environment is not there to cause the disappear-
ance of entanglement between the system and the appa-
ratus, but is there to purify the initally mixed state of the
apparatus. The measurement transformation is now given
by j�EAi 


P
i aijii ���! P

i aij�
i
EAijii, where j�EAi �P

i
����
ri

p
jeiijrii and jeii is an orthonormal basis for the

environmental states. We see that when the environment
is traced out, the state of the apparatus is equal to 
. Now,
the measurement implements a unitary transformation so
that each of the states of the apparatus changes according
to which state of the system it interacts with. Therefore we
see that the ith state of the environment and the apparatus
after the interaction is given by j�i

EAi �
P

j
����rj

p
jejij~rrjii.

To make a link with the first picture of the measure-
ment, we trace out the environment to obtain 
A0S0 �P

ij aia�
j �
P

khekj�
i
EAih�

j
EAjeki� 
 jiihjj and, thus, the

quantity in brackets can be identified with 
ij �P
k rkj~rrkiih~rrkjj. Therefore, since we have no access to the

environment, our task is to discriminate the states 
ii,
and therefore identify the corresponding states jii of the
system, and this was done in the previous analysis. If, on
050401-3
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the other hand, we had access to the environment, the
measurement could be perfect.

We first apply entropic considerations to the
‘‘environment-apparatus-system’’ tripartite state. The
initial and the final entropy of the environment are the
same as its state remains unchanged, and this value is
the same as the initial entropy of the apparatus, S�
�. As
we have seen, this is an important quantity, as it deter-
mines how much information can be extracted from a
measurement: the more mixed the initial state of the
apparatus, the less information can be extracted. If the
initial state is maximally mixed (say it is a thermal state
with an arbitrarily high temperature), then there can be
no information gain during the measurement. The initial
entropy of the apparatus is also equal to the entropy of
the system and the apparatus after the measurement,
S�
A0S0 � � S�
f�, as well as the amount of entanglement
between the environment and the system and the appara-
tus together, EE:�A0S0�, after the measurement. The entan-
glement and the mutual information between the
environment and the apparatus after the measurement
are always less than or equal to their value before the
measurement (since the systems becomes correlated to
the apparatus during the measurement).

We now use the recently derived three-party entangle-
ment bounds to provide further constraints on the mea-
surement. For any pure tripartite states ABC we have that
[7]: maxfE�AB� 	 S�C�; E�AC� 	 S�B�; E�BC� 	
S�A�g � E�ABC�. Applying this to our measurement
scenario we obtain that S�
� � EE:A0:S0 � EA0:S0 , where
the subscripts E; A; S indicate the environment, the appa-
ratus, and the system, respectively. The primes on the
subscripts indicate states after the measurement. We see
that the closer the tripartite entanglement to the entan-
glement between the system and the apparatus (with the
environment disentangled), the more efficient the mea-
surement. We immediately conclude that the necessary
condition for the equality between the two entanglements
is that the initial entropy of the apparatus is zero. It should
be remembered, however, that the measurement can still
be perfect even though the apparatus is not pure and this is
because the relevant quantity is the classical correlations
between the system and the apparatus and not their en-
tanglement. In that context we can also derive from the
above inequality that EE:A0 	 S�
S0 � � EE:A0:S0 , so that

EE:A0 	 Im � EE:A0:S0 � S�
� � S�
0
A�:

Thus, the sum of the information from the measurement
and the final entanglement between the environment and
the apparatus is limited by the final entropy of the appa-
ratus and therefore by logN. Again we see that the larger
the information we want, the smaller the entanglement
with the environment and the apparatus will be. So, in
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fact, for the measurement to be efficient we wish the
environment not to become entangled with the apparatus
to a large extent (after the measurement). We should
mention at the end that our example is somewhat simpli-
fied in that the environment will not, in reality, be passive
throughout the process. It would instead interact with
both the system and the apparatus making the measure-
ment even less effective, although all the above results
would still apply.

In this Letter we have analyzed the information gained
in a quantum measurement when the apparatus used to
extract this information is initially in a mixed state. We
have shown that the amount of information is correctly
identified with the amount of classical correlations be-
tween the system and the apparatus after their correlation
is established and derived an entropic uncertainty relation
between this amount and the mixedness of the initial
state. Further light on quantum measurement was then
shed by purifying the apparatus and including its own
environment in the analysis. Among open problems high-
lighted by this work are to extend the analysis to non-
orthogonal states of the apparatus and to prove that the
information gain is symmetric between the system and
the apparatus.
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