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We propose a scheme employing quantum-reservoir engineering to controllably entangle the internal
states of two atoms trapped in a high-finesse optical cavity. Using laser and cavity fields to drive two
separate Raman transitions between stable atomic ground states, a system is realized corresponding to a
pair of two-state atoms coupled collectively to a squeezed reservoir. Phase-sensitive reservoir corre-
lations lead to entanglement between the atoms, and, via local unitary transformations and adjustment
of the degree and purity of squeezing, one can prepare entangled mixed states with any allowed
combination of linear entropy and entanglement of formation.
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The properties of entangled mixed states and schemes
for their controlled preparation are presently under vigo-
rous investigation, primarily because of their relevance to
understanding the role of purity and entanglement in
quantum computation and quantum communication [1].
The purity and degree of entanglement of two-qubit states
can be quantified, respectively, by the linear entropy and
either the entanglement of formation or the concurrence
[2,3]. Here, we propose a scheme using interactions in
cavity quantum electrodynamics (CQED) to prepare
states of two atomic qubits with any allowed combination
of linear entropy and concurrence.

Our scheme uses the technique of quantum-reservoir
engineering [4] in a CQED setting to couple a pair of two-
state atoms collectively to an effective squeezed reservoir.
The phase-sensitive quantum correlations of the reservoir
are transferred to the atoms to produce entangled atomic
states [5,6]. The purity and entanglement of these states
can be controlled through the excitation time, through
properties of the effective squeezing, and through the
relative strengths of amplitude and phase coupling to
the reservoir. We are thus able to scan the entire allowed
region of the linear entropy-concurrence (LEC) plane,
including the region between theWerner states [7] and the
recently characterized maximally entangled mixed states
(MEMS) [2]. Other CQED schemes for entangling a pair
of atoms have been proposed and even implemented (see,
e.g., [8–10]), but these focus mainly on preparing maxi-
mally entangled pure states.
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In our proposal, two atoms are assumed to be tightly
confined inside a high-finesse optical cavity and sepa-
rated by a large enough distance that they feel no
direct dipole-dipole interaction. Note, however, that the
schemes we will describe enable us to access most of the
allowed region of the LEC plane without the need to
individually address each atom. The cavity has a field
decay rate � and a frequency !, and may, if desired, be
driven with broadband thermal light characterized by a
mean photon number n [11]. Two stable ground states
(j0i; j1i) of each atom constitute the qubit states (Fig. 1).

The cavity field and two auxiliary laser fields drive two
separate resonant Raman transitions between these states.
In particular, transitions j1i $ jri and j0i $ jsi are
driven by detuned laser fields with (real) Rabi frequencies
�r and �s and relative phase ’, while the transitions
j0i $ jri and j1i $ jsi are strongly coupled to the cavity
mode, with coupling strengths gr and gs (assumed the
same for both atoms). Detunings of the fields from the
excited states jri and jsi are �r and �s. A fifth state jti
is virtually excited from j0i by another strongly detuned
laser field, adding an additional ac-Stark shift to the
state j0i.

The master equation for the total system density op-
erator is (taking �h � 1)

_��T � �i�H;�T� �Lcav�T �Lspon�T; (1)

where H � Hcav �Hat �Hint, with Hcav � !aya,
Hat �
X
i�1;2

f!rjriihrij �!sjsiihsij �!tjtiihtij � �j1iih1ij � ���r=2
e
�i!Lr tjriih1ij � H:c:�

� ���s=2
e
�i�!Ls t�’�jsiih0ij � H:c:� � ���t=2
e

�i!Lt tjtiih0ij � H:c:�g;

Hint �
X
i�1;2

�grjriih0ija� gsjsiih1ija� H:c:
; (2)

(H.c. denotes Hermitian conjugate) and

Lcav�T � ��1� n
�2a�Tay � aya�T � �Taya
 � �n�2ay�Ta� aay�T � �Taay
: (3)
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FIG. 1. Level scheme for each atom. The excited states have
energies �h!j (j � r; s; t). Such an atomic configuration could
be realized, e.g., with alkali atoms, where j0i and j1i are
different ground-state hyperfine sublevels. Note also that jri
and jsi can be the same level, provided the two Raman channels
remain distinct from each other (which would require � � 0).
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Here, a is the cavity mode annihilation operator, !Lj
(j 2 fr; s; tg) denote the laser frequencies, and the term
Lspon�T describes atomic spontaneous emission.
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To isolate the essential dynamics, we assume large
detunings of the light fields from the excited atomic states
(i.e., j�jj � �j; gr; gs; �; �j, where �j is the linewidth of
state jji), so that atomic spontaneous emission is negli-
gible and the excited states can be adiabatically elimi-
nated from the problem. This leads to a reduced master
equation for a pair of effective two-level atoms (involving
states j0i and j1i) coupled to the cavity mode. This
reduced system is characterized by the parameters
�k � gk�k=�2�k
; �k � g2k=�k; k 2 fr; sg;
where �r and �s are the two (Raman) coupling strengths,
and �r and �s are the ac-Stark shifts per cavity photon
induced in j0i and j1i, respectively.

To further reduce the model, we assume the ‘‘bad-
cavity’’ limit, �� j�r;sj; j�r;sj. This enables us to adia-
batically eliminate the cavity mode, which yields a
master equation for the atomic density matrix in the form
_�� � �2�2=�
�N � 1
�2S�Sy � SyS�� �SyS
 � �2�2=�
N�2Sy�S� SSy�� �SSy


� �2�2=�
M�2Sy�Sy � SySy�� �SySy
 � �2�2=�
M��2S�S� SS�� �SS


� ��2=2�
n�n � 1
�2P�Py � PyP�� �PyP
: (4)
Here, �2 � �2r � �2s , �2 � ��r � �s

2, and

N �
�n � 1
�2s � �nn�2r

�2
; M �

��2n � 1
�r�sei’

�2
;

while S � ���
1 � ��

2 
=
���
2

p
and P � ��

1 �
�
1 � ��

2 �
�
2 are

collective atomic operators, with ��
i � j0iih1ij.

The derivation of (4) also requires that the phase of the
effective two-level system remains constant with respect
to the laser phase difference ’. That is, the effective
atomic system and squeezed reservoir must be ‘‘reso-
nant’’ with each other, which requires that

�2s
4�s

�
�2r
4�r

�
�2t
4�t

�
g2r
�r
n �

g2s
�s
n � 0: (5)

It is to satisfy this condition while retaining flexibility in
our choices of �r;s and �r;s that we use the additional
transition j0i $ jti. The level shift �2t =�4�t
 provides an
extra degree of freedom with which to satisfy (5).

In (4), the �2 terms describe the collective (amplitude)
coupling of our effective two-level atoms to an effective
squeezed reservoir, with the degree and purity of squeez-
ing characterized by the parameters fN;Mg [5,6]; i.e., the
effective squeezed quadrature variance is proportional to
�N � jMj � 1=2
 and ideal squeezing (n � 0) corre-
sponds to jMj2 � N�N � 1
. The last line of (4) describes
phase damping of the atomic qubits caused by coherent
scattering of off-resonant thermal intracavity photons.

A feature of the present system is that the strengths of
the amplitude and phase damping terms are indepen-
dently adjustable, so that, for example, one can be made
to dominate the other [remembering that (5) must remain
satisfied]. Also, by switching off all sources of light (i.e.,
setting �r � �s � 0 and n � 0), the state of the two-
atom system can in principle be ‘‘frozen’’ at any instant.

To begin our analysis of (4), we note first that associ-
ated with the collective coupling of the atoms to the
reservoir are certain decoherence-free states, which de-
couple completely from the dynamics [10]. In particular,
defining j��i � �j00i � j11i
=

���
2

p
and j �i � �j01i �

j10i
=
���
2

p
, one finds that j �i decouples for all parameter

choices, while j �i decouples if N � M � 0.
As a first example, we consider the case in which phase

damping can be neglected (i.e., n � 0 or �2 � �2). The
steady state density matrix �ss is then, assuming an
initial state that has no projection onto j �i, given by

�ss �

0
BB@
�11 0 0 �14
0 �22 �23 0
0 �32 �33 0
�41 0 0 �44

1
CCA; (6)

specified in the basis fj11i; j10i; j01i; j00ig, with

�11 �
jMj2�1� 2N
 � N2�1� 2N


�1� 2N
L
;

�22 � �33 � �23 �
1

6
�
1

6L
; �14 �

M
�1� 2N
L

;

where L � 1� 3N�1� N
 � 3jMj2.
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FIG. 2. Steady state values of Cfree��
 and SL��
 for selected
values of N and 0 � jMj2 � N�N � 1
, for initial state j00i. For
jMj2 <N�N � 1
 (nonideal squeezing), we require n � 0.
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Examples of the steady state and time evolution to the
steady state are shown in Figs. 2 and 3, respectively,
plotted as points in the LEC plane. We plot a minor
variation of the true definition of the concurrence and
call it the free concurrence Cfree � � 1 �  2 �  3 �  4
,
where  1–4 are the square roots of the eigenvalues, in
decreasing order, of �~��, where ~�� � ��y � �y
����y �
�y
, with �y � �i��� � ��
. The use of the free con-
currence enables separable states (Cfree � 0) to be more
readily distinguished. The linear entropy is given by
SL��
 � �4=3
�1� Tr��2
�. On each graph, we also plot
lines corresponding to the Werner states, �W �
#j��ih��j � �1=4
�1� #
14 (0 � # � 1), the MEMS
of [2], which have the maximum amount of entanglement
for a given linear entropy, and thermal states �th �
�$j0ih0j � �1� $
j1ih1j��2 (0 � $ � 1).

For ideal squeezing �ss � j�sih�sj, a pure state [5]
given by
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FIG. 3. Evolution of Cfree��
 and SL��
 to the steady state
with ideal squeezing [jMj2 � N�N � 1
] for the following
initial states and values of N: fj00i; N � 0:2g (�), fj00i; N �
0:5g (�), fj00i; N � 1g (�), fj00i; N � 5g (�), fj11i; N � 0:2g
(4), fj01i; N � 2g (�), and fj01i; N � 0:01g (+). Note that the
points on each curve are not equally spaced in time.
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j�si �

����������������
N � 1

1� 2N

r
j00i � ei’

����������������
N

1� 2N

r
j11i; (7)

which approaches the Bell states j��i in the limit of large
squeezing (i.e., large N, and ’ � % or 0). Nonideal
squeezing (Fig. 2) generates steady states that can lie
essentially anywhere below the Werner line. Note that
for largeN the steady states closely approximate mixtures
of j��ih��j (’ � %) and �0 � diagf1=3; 1=6; 1=6; 1=3g.

Time evolution with ideal squeezing from initial states
with zero projection onto j �i can also sweep out the
region beneath the Werner line (Fig. 3). When the initial
state does have a projection onto j �i (e.g., j01i), an
interesting range of points on the plane can also be
accessed, including an area above the Werner line and
the region along the boundary at Cfree � 0 between sepa-
rable and entangled (including the maximally mixed
entangled state at the intersection of the Werner and
MEMS lines).

States above the Werner line can also be generated by
initially preparing the separable pure superposition state,

j��0
i � fcos�&=2
12 � i sin�&=2
�yg
�2j00i; (8)

with 0< & � %=2, and then applying the effective reser-
voir interaction with strong, ideal squeezing. In this case,
the time evolution follows paths as shown in Fig. 4.

There is a small region of high entropy above the
Werner line that cannot be reached by this method.
However, this region can be accessed by switching off
the squeezed reservoir interaction (�r;s � 0) and employ-
ing phase decay (�; n � 0) from initial states prepared
on the & � %=2 curve of Fig. 4 and to which the local
unitary transformation U � �1=2
f�x � �zg � f12 �
i�yg (requiring single-atom addressing with appropriate
laser Raman pulses) has first been applied. This is also
illustrated in Fig. 4. This may not be the optimum way to
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FIG. 4. Evolution of Cfree��
 and SL��
 for initial states (8)
with & � f%=4; %=2g, N � 3:1, and �nn � 0. The dotted curves
show evolution produced by phase decay turned on after
application of the unitary transformation U to a selection of
states from the & � %=2 curve. For this evolution, amplitude
coupling is disabled, but � � 0 and n � 1.
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FIG. 5. Evolution of Cfree��
 and SL��
 with spontaneous
emission effects for �gr; gs; �; �j;�s;�j
=2% � �110; 110; 14:2;
5:2; 100; 8000
 MHz (j � r; s; t), �2t � �2r ��2s , and n � 0,
with the following initial states and values of�r: {Eq. (8), & �
%=2, �r � 120 �N � 2:3
g (�), fj00i;�r � 173 �N � 0:5
g
(�), fj11i;�r � 245 �N � 0:2
g (4), fj01i;�r � 110 �N �
5
g (�), and fj01i;�r � 458 �N � 0:05
g (+). Note that the
points are not equally spaced in time.
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access this region; it would be desirable to avoid the
(experimentally difficult) need for single-atom address-
ing, but we have not yet found a simpler scheme.

Further analysis of (4) shows that the slowest dynami-
cal rate is �4�2=�
�2N � 2jMj � 1
, which exhibits the
inhibited decay associated with atomic damping by a
squeezed reservoir [12]. Including atomic spontaneous
emission (due to finite excited state populations) in the
model reveals characteristic rates �j��2j=2�

2
j 
. Taking

the rate for j � r to be the maximum, and setting n �
0, the condition that spontaneous emission be negligible
during the state preparation reduces to 2g2r=��r�
 � �1������������������������
N=�N � 1


p
��2. This is the condition of strong coupling

CQED, made more stringent, however, due to the
inhibited atomic decay rate. If we consider a recent
CQED experiment for which �g; �; �
=2% � �110; 14:2;
5:2
 MHz [13], then for N � 2 the above inequality reads
as 332� 30, indicating that sufficiently strong coupling
is experimentally realistic for achieving high levels of
effective squeezing. Furthermore, setting, e.g., �r=�r �
0:02 and using the above parameters, the characteristic
state preparation time is & 50 +s, which is orders of
magnitude less than single-atom trapping times in tightly
confining optical dipole traps (see, e.g., [14,15]).

Figure 5 shows sample evolutions from a model
in which excited atomic states have been adiabatically
eliminated, but in which effects of spontaneous emission
plus the cavity mode dynamics are included. Using the
CQED parameters quoted above, we see that a large area
of the LEC plane can be accessed. With the inclusion of
spontaneous emission, decay into the (weakly coupled)
state j �i can occur for states with no initial projection
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onto j �i. This limits the maximal attainable concur-
rence and leads also, for the cases with h �j��0
j �i �
0, to a very slow decay of Cfree��
 and increase in SL��

after rapid initial evolution to the optimal value of
Cfree��
. Note again though that the evolution can be
frozen at any point by turning off all of the light fields.
Higher cavity finesses improve the performance of the
scheme and should be accessible experimentally [16].

Experimental values of Cfree��
 and SL��
 could be
determined from a tomographic reconstruction of the
two-qubit density matrix, following, e.g., the general
procedure described in [17] (and used in [1]). In the
present context, this would involve unitary rotations of
the atomic states via coherent Raman transitions, fol-
lowed by state-selective fluorescence detection [15].

In conclusion, we have proposed a scheme for engineer-
ing atomic two-qubit states with any allowed combina-
tion of linear entropy and concurrence. Such states will
permit detailed experimental investigation of purity and
entanglement in quantum information protocols.
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W. J. Munro. This work was supported in part by the
Marsden Fund of the Royal Society of New Zealand.
[1] A. G. White, D. F.V. James, W. J. Munro, and P. G. Kwiat,
Phys. Rev. A 65, 012301 (2001).

[2] W. J. Munro, D. F.V. James, A. G. White, and P. G. Kwiat,
Phys. Rev. A 64, 030302 (2001).

[3] The concurrence C is monotonically related to the en-
tanglement of formation EF��
; i.e., EF��
 � h��1����������������
1� C2

p

=2�, where h�x
��xlog2x��1�x
log2�1�x
.

[4] N. Lütkenhaus, J. I. Cirac, and P. Zoller, Phys. Rev. A 57,
548 (1998).

[5] G. M. Palma and P. L. Knight, Phys. Rev. A 39, 1962
(1989).

[6] G. S. Agarwal and R. R. Puri, Opt. Commun. 69, 267
(1989); Phys. Rev. A 41, 3782 (1990).

[7] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[8] E. Hagley et al., Phys. Rev. Lett. 79, 1 (1997).
[9] S. Osnaghi et al., Phys. Rev. Lett. 87, 037902 (2001).

[10] M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight,
Phys. Rev. A 59, 2468 (1999).

[11] Such driving may be achieved, e.g., using a single output
mode of a nondegenerate parametric oscillator operated
below threshold, as in the experiment of Q. A. Turchette
et al., Phys. Rev. A 58, 4056 (1998).

[12] C.W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).
[13] C. J. Hood et al., Science 287, 1447 (2000).
[14] J. McKeever et al., quant-ph/0211013.
[15] D. Frese et al., Phys. Rev. Lett. 85, 3777 (2000).
[16] H. J. Kimble (private communication).
[17] D. F.V. James, P. G. Kwiat, W. J. Munro, and A. G. White,

Phys. Rev. A 64, 052312 (2001).
047905-4


