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We study the low energy states of finite spin chains with isotropic (Heisenberg) and anisotropic (XY
and Ising-like) antiferromagnetic exchange interaction with uniform and nonuniform coupling con-
stants. We show that for an odd number of sites a spin cluster qubit can be defined in terms of the ground
state doublet. This qubit is remarkably insensitive to the placement and coupling anisotropy of spins
within the cluster. One- and two-qubit quantum gates can be generated by magnetic fields and
intercluster exchange, and leakage during quantum gate operation is small. Spin cluster qubits inherit
the long decoherence times and short gate operation times of single spins. Control of single spins is
hence not necessary for the realization of universal quantum gates.
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Quantum computers outperform classical computers on
certain tasks [1-4]. The main challenge on the way to a
universal quantum computer is to achieve control over
single quantum mechanical two state systems (qubits)
while preserving long decoherence times. Electron [5,6]
and nuclear [7,8] spins have been identified as promising
candidates for qubits because they are natural two state
systems and decoherence times for the spin degree of
freedom are unusually large [9,10].

For both electron [5] and nuclear spin [8] qubits, one-
qubit gates can be realized by local magnetic fields or by
electrically tuning a single spin into resonance with an
oscillating field. Two-qubit gates rely on electrical control
of the exchange interaction between neighboring electron
spins. However, even for electrons in quantum dots with a
typical diameter of 50 nm, the required local control over
electrical and magnetic fields is challenging. One possi-
bility to circumvent the problem of either local magnetic
fields [11] or local exchange interaction [12] is to encode
the qubit in several spins. Such encoding has also been
studied in the context of coherence-preserving qubits
[13]. However, all these schemes still require control at
the single-spin level.

More generally, the requirements on both local mag-
netic and electrical fields can be relaxed by increasing the
size of the qubit. In the present work, we show that, for a
wide class of antiferromagnetic spin s = 1/2 chains with
an odd number of sites n,,
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the ground state doublet of the array [Fig. 1(a)] can define
a new “‘spin cluster qubit” for which quantum gate op-
eration times and decoherence rates increase only moder-
ately with array size. These features are surprisingly
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stable with respect to anisotropy (J; # J,) and spatial
variation (described by f;) of the intracluster exchange,
the spatial shape of the fields controlling quantum gate
operation, and the cluster dimension. Spin cluster qubits
can be realized in a wide variety of systems, e.g., arrays of
quantum dots [5,14], clusters of P atoms in a Si matrix [8],
and electron spins in molecular magnets. In contrast to
the encoded qubits suggested in earlier work [11-13],
quantum computation with spin cluster qubits is possible
without control over local spin interactions.

Isotropic spin chains as qubits.—For illustration, we
first discuss a spin chain with isotropic uniform exchange,
Jy=J,>0and f; =1 in Eq. (1). Energy eigenstates
can be labeled according to their quantum numbers of
total spin § = >, 8; and the z component of total spin,
S.. Because of the antiferromagnetic exchange, states in
which the total spin of the chain is minimized are ener-
getically most favorable [15]. For odd n,, the ground state
isa S = 1/2 doublet separated from the next excited state
by a gap A ~ J7%/2n, determined by the lower bound of
the des Cloiseaux-Pearson spectrum. We define the spin
cluster qubit in terms of the S = 1/2 ground state doublet
by 8.0y = (/i/2)|0) and S,|1) = —(/i/2)|1). The states
{10), [1)} do not, in general, have a simple representation
in the single-spin product basis, but rather are superposi-
tions of n.!/[(n, — 1)/2]![(n, + 1)/2]! states [Fig. 1(b)].
For example, for the simplest nontrivial spin cluster qubit
with n, = 3,
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and |1) is obtained by flipping all spins.
In spite of their complicated representation in the
single-spin product basis, |0) and |1) are in many respects
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FIG. 1. (a) The states of the spin cluster [Eq. (1)] define the
spin cluster qubit. (b) |0) and |1) have a complicated represen-
tation in the single-spin product basis, as evidenced by the local
spin density. (c) Quantum gates are generated by magnetic
fields or g-factor engineering (one-qubit gates) and a switchable
interqubit exchange J.(¢) (two-qubit gates).

very similar to the states | 1) and | |) of a single spin and,
hence, can be used as qubit states for universal quantum
computing [5]. Because {10y, 1)} belong to one § = 1/2
doublet such that $710) = A|1), and $*|1) = K|0) where
§* =8 =+ zS a magnetic field B constant over the
cluster acts on the spin cluster qubit in the same way as
on a single-spin qubit. Hence, both the one-qubit phase
shift and the one-qubit rotation gate can be generated by
magnetic fields B_(r) and B,(f), respectively, possibly
in combination with g-factor engineering [5,16]. For
a given B_,(t), operation times of one-qubit gates are
equal to the ones for the single-spin qubit. We note
that, duAe to quantum mechanical selection rules, we
have (i|S|0) = (i|S|1) = O0for |i) # |0), |1), i.e., auniform
magnetic field does not cause leakage to states outside the
ground state doublet.

For the CNOT gate, one requires a tunable exchange
interaction H, between one or several spins of neighbor-
ing spin cluster qubits I and II. For simplicity, we first
restrict our attention to an isotropic exchange coupling
H, = J.(1)8}, - 8" between the outermost spins of
clusters I and I, respectively [Fig. 1(c)]. This exchange
interaction will, in general, not only couple states within
the two-qubit basis {|00), [01), [10), [11)}, but will also
lead to transitions to excited states (leakage). If J.(7)
changes adiabatically, i.e., on time scales long compared
to /A and |J.(1)] < A for all times ¢, leakage remains
small (see below). The action of A, can then be described
by an effective Hamiltonian in the two-qubit product
basis

*J_(t) (

H, = J (88" + STHSI- + §1-81+)  (3)

where the roman numbers label the spin clusters,
Ji (1) = 47010135, - 10% [ (OI3} |0}y l, and J. (1) =
47, (t)II(llan |0)1||H<0|s1x|1)H| We have shown that the
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coupling H., is isotropic also in the two-qubit prod-
uct basis and acts on the states |0) and |1) of neighboring
spin chains in the same way as an isotropic exchange
between two single spins. [[(1|8}, [0)] and [;O[3} [ 1)yl
determine the gate operation time 7y of the CNOT gate,
|i)|jy — |i)li + jmod2) where i,j=0,1. For n, =
9,...,15, the matrix elements are of order 0.1, ie., a
factor of 5 smaller than for a single spin 1/2.

Although we have so far discussed one-qubit
gate operations induced from spatially uniform
magnetic fields, such uniformity may be difficult to
achieve experimentally. One-qubit gates can be per-
formed with spatially varying fields B;, and B;, (or g
factors) for which [(1]>7, g;upB;,8;,10) # 0 and
O >, gimpB;.8,;.10) # 0, respectively. Similarly, the
analysis leading to Eq. (3) remains valid for a wide class
of coupling Hamiltonians H, for which (10|H.]01) # 0.
For illustration we discuss two examples. First, couplings
between several spins of cluster I to several spins of
cluster II, such as H, = J, Y, §!-8! are permitted
and even lead to a decrease of 7y because the coupling
of several spins in the microscopic Hamiltonian leads to
an increased effective coupling between the clusters.
Second, a modification of the intracluster exchange cou-
plings by H. due to additional terms such as J,8! - §!
does not invalidate the proposed gate operation scheme.
This illustrates the most significant advantage of the spin
cluster qubits over single-spin qubits—that it is sufficient
to control magnetic fields and exchange interactions on a
scale of the spin cluster diameter. For the linear spin
cluster qubit, this length scale is n, times larger than
the original qubit.

A set of universal quantum gates is necessary but not
sufficient for the realization of a quantum computer.
Rather, additional requirements must be met, including
initialization, decoherence times large compared to gate
operation times, and readout [17]. Initialization can be
achieved by cooling in a magnetic field B, to a tempera-
ture [5] T < gupB,/kg < A/kg. Because the state of the
spin cluster qubit, |0) or |1), determines the sign of the
local magnetization at each site within the spin chain
[Fig. 1(b)], readout of the spin cluster qubit can be accom-
plished by readout of the spins within the cluster [5,18].

An important consideration is the effect of decoher-
ence on spin cluster qubits. The scaling of the decoher-
ence rate with system size depends on the microscopic
decoherence mechanism. For electron spins in quantum
dots, fluctuating fields and nuclear spins have been iden-
tified as dominant sources [5,6,19]. We model [5] the
action of fluctuating magnetic fields by ﬂg = b(1S,
where b(z) is Gaussian white noise, (b(r)b(0)) =
27yB8(1). Because the magnetic moment *gup/2 of
the spin cluster qubit is the same as for a single spin,
the decoherence rate [20] 7y? is independent of n,.
In contrast, the decoherence rate due to fluctuating fields
acting independently on each site increases linearly
with n,.
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Spin dynamics during gate operation.—One- and two-
qubit gates induce spin dynamics in the clusters, and
leakage out of the ground state doublet is required to
remain small. In order to quantify leakage, by numerical
integration of the Schrodinger equation we trace the time
evolution of a small spin cluster qubit (n, = 5) during the
one-qubit rotation gate. The qubit is rotated coherently
from |0) into |1), which corresponds to a simultaneous
rotation of all spins [Figs. 2(a) and 2(b)]. The one-qubit
rotation can also be generated by an inhomogeneous field
B, acting, e.g., only on the central spin of the cluster as
long as gugB, < A [Figs. 2(a) and 2(b)]. Leakage due to
instantaneous switching is less than 0.3% for gugB, =
0.1J, but increases with gugB, [Fig. 2(b)].

For the special cases J,, = J,, and J,, = 0 in Eq. (3),
an explicit pulse sequence for the CNOT gate has been
derived previously in Refs. [5,21]. We define the unitary
time evolution operator U,(7/2) = T exp(—i fdtI:I*/ﬁ),
with — [dtJ, (1)/h = /2. Then, more generally,

Ucnor ~ e*in§1/2ei2wn1 -SI/3ei277n2~SH/3 U*(7T/2)

ein'S'{. U*(W/z)efiﬂ's,{ﬂefin}}/Zeinil/Z 4)

is the CNOT gate for an arbitrary effective XXZ-coupling
Hamiltonian [Eq. (3)] if J.; #0, where n; =
(1, -1,1)/+/3 and n, = (1,1, —1)/+/3 . We confirmed
that for the complete pulse sequence the dynamics of
two spin clusters is as predicted on the basis of the two-
level description (Fig. 3). Leakage induced by H, is small
for J. << A because all spins in the clusters corotate,
although H., couples only the outermost spins.

Spatially varying and anisotropic exchange.—We
show next that spin cluster qubits are extremely robust
with respect to spatial variation [accounted for by f; in
Eq. (1)] and anisotropies (J; # J,) of the intracluster
exchange For spatially varying isotropic exchange (/| =

= J), the system still exhibits a § = 1/2 ground state
doublet [15] and the above analysis remains valid. In
systems such as quantum dot arrays where it is possible
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FIG. 2. (a) Local spin density within a spin cluster qubit

(n, = 5) as function of ¢ « guzB,t/h obtained by integration
of the full Schrodinger equation for homogeneous (solid line)
and inhomogeneous B, (dashed and dashed-dotted lines).
(b) For B, < A/gup or homogeneous B,, the state rotates
coherently from |0) to [1). For a magnetic field acting only on
the central spin of the cluster, the leakage increases to 7% for
g,lLBBX = (0.5J.
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to engineer the intracluster exchange Jf; during sample
growth, the qubit basis states {|0), |1)} can be tailored to
some extent.

We next consider the XY chain, J, =0. By the
Jordan-Wigner transformation [22], the XY spin chain is
mapped onto a system of noninteracting spinless fermi-
ons with spatially varying hopping amplitudes H=

—(JL/2) >0 1 A IHA, + 1// &), where ¢, annihi-
lates a Jordan-Wigner fermion at site i. We find that the
one-particle Hamiltonian has (n, — 1)/2 states with
negative and positive energy, respectively, which are pair-
wise related to each other by staggering of the wave
function. There is one zero-energy eigenstate

i fifs LSS a2
o (10.- 702 0 f2f4...f,“>' ®)

The ground state doublet of the XY chain corresponds to
the lowest (n, — 1)/2 and (n, + 1)/2 Jordan-Wigner fer-
mion levels filled. For f; = 1, A =~ 7rJ | /n,. Similarly to
the spin chain with isotropic exchange, one-qubit gates
can be realized by magnetlc fields B.(¢) and B, () unless
118,10y = 0. For n. =<9 and f, =1, [(115,]0)] = 0.4.
From Eq. (5), one can also calculate all matrix elements
entering Eq. (3). In particular, for f; =1, <0|s,, -0y =

1/(n,+1) and (118, |0)] =1/y2(n. +1 Because
of the anisotropy of the intrachain exchange, H (which
is isotropic in the single-spin operators) translates into an
anisotropic effective Hamiltonian Eq. (3). Neverthe-
less, the CNOT gate can still be realized according to
Eq. (4). For the anisotropic chain, a magnetic field
applied along an axis n translates into a rotation
around the axis o (2|<1|3‘x|0)|nx,2|<1|$’x|0>|n}., n.) in
the Hilbert space spanned by {|0), [1)}. A one-qubit
rotation around an arbitrary axis hence requires
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FIG. 3. cNoT gate for two small spin cluster qubits (n. = 3)
obtained by numerical integration of the Schrédinger equation
[see Fig. 1(c)]. The plotted probabilities and the phases (not
displayed) show that (a) [00) — |00) and (b) [10) — [11). We
have chosen a pulse sequence [Eq. (4)] with instantane-
ous switching (at times ¢;), B =0.1J/gug, and J, = 0.1J.
Leakage due to instantaneous switching (0.7% for our parame-
ters) can be reduced by decreasing J, and B.
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appropriate rescaling of B. For example, the rotation
corresponding to exp(i2zm, - S'/3) [Eq. (4)] for the
isotropic chain can be achieved by applying a magnetic
field B = By[1 + 2/(2[(1]8,]0))2]"/2//3 along the axis
o (1, — 1, 2[{1]8,|0)|) for a time 27/ /3guzB,. For given
J. and B, the CNOT gate operation time increases at most
linearly with n,.

For J.> J, (Ising-like systems), where [|0)=
[z AT, + OUL/],), the ground state doublet
is separated from the next excited state by an
n.-independent A ~ J_ min(f;). In perturbation theory
in J,/J,, for f; =1, the matrix elements 1(1]8,10)],
(113, IO} ~ (27, /J,)"~ /2 decrease ~exponentially
with n.. Even for medium sized chains n, =9 and
JL /JZ < 0.2, an isotropic H . translates into an effective
Ising Hamiltonian, J,; = 0 in Eq. (3). Hence, only quan-
tum computing schemes which rely on Ising interactions
[23] are feasible.

Discussion.—The main idea of the present work applies
not only to spin chains but remains valid for a wide class
of antiferromagnetic systems with uncompensated sub-
lattices, also in higher dimensions d > 1 and for larger
spins s > 1/2. We illustrate the advantages of spin cluster
qubits for electron spins in quantum dots with a typical
diameter of d = 50 nm, where the exchange coupling can
be as large as 10 K [6]. One-qubit operations are realized,
e.g., by g-factor engineering in the presence of a static
field B =~ 1 T. We now compare the performance of a spin
cluster qubit formed by n, = 5 quantum dots coupled by
an intracluster exchange J = 10 K with a single-spin
qubit. To obtain an estimate, we consider gate operation
by switching the magnetic field B to gugB = 0.7 K, and
J. =23 K [6], small compared to the energy gap A =
7.2 K of the spin cluster. For single spins, the gate opera-
tion times for the NOT and CNOT gate are 36 and 117 ps,
respectively. Assuming that the magnetic field decreases
smoothly from its maximum value at the central spin of
the spin cluster qubit to 0.2B acting on spins 2 and 4, we
find that the operation time for one-qubit gates increases
by a factor 1/2[(1|33, + 0.25,, + 0.25,,]0)| = 2.2 com-
pared to the single spin. Similarly, for the operation time
of the CNOT gate we find 280 ps for the spin cluster qubit.
The main advantage of the spin cluster qubit is that it is
sufficient to control magnetic fields or g factors on a
length scale of n.d = 250 nm and exchange couplings
on a scale of 2n.d = 500 nm. This would allow one to
control the exchange between neighboring clusters opti-
cally [14] at the expense of an increase in gate operation
times by a factor of 2.

Other possible applications for spin cluster qubits in-
clude, e.g., P atoms in a Si matrix [8] and molecular
magnetic systems [24]. For electron spins of P atoms in
a Si matrix, the requirement of positioning P with lattice
spacing precision [8,25] can be circumvented by the use
of spin clusters instead of single spins. More generally, the
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present work shows that for universal quantum gates
control is not required at the level of single electron spins.
Because a qubit can always be mapped onto a spin 1/2,
the general principle of arranging several qubits into a
cluster qubit applies to any quantum computing proposal.
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