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A constructive scheme for determining pure states at very low temperature in the 3-spins glass model
on a random lattice is provided, in full agreement with Parisi’s one step replica symmetry breaking
(RSB) scheme. Proof is based on the analysis of a partial decimation procedure and of the statistical
properties of its output, i.e., a reduced Hamiltonian acting on a subset of the initial spins. The number of
ground states (GS) in each state, the number of states, and the distances between GS are calculated and
correspond to RSB predictions.
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formed by the attached spins, is associated with a cou-
pling Jm equal to �1 with equal probabilities. The

GS. Two GS belonging to different clusters lie apart at a
typical Hamming distance d0 � d � 1=2 while, inside
Parisi’s replica symmetry breaking (RSB) theory and
its physical interpretation have turned out to be very
fruitful for the investigation of disordered systems over
the past 20 years [1]. Unfortunately, the mathematical
basis for RSB is rather weak. Rigorous studies confirming
RSB predictions have been limited to few mean-field
models thus far [2]. One of the most striking assumptions
in RSB theory, the existence of numerous pure states, or
clusters, in phase space on which the Gibbs measure
becomes concentrated at low temperature is still not fully
understood even at the mean-field level despite recent
progress [2], not to mention its applicability to finite
dimensional systems.

In this Letter, we present a rigorous study of a spin
glass model which allows us to identify explicitly pure
states for a given sample. Our analysis consists in deci-
mating well chosen spins appearing in the original
Hamiltonian H. When decimation stops, two cases may
occur depending on the value of control parameters. If no
spin is left, the partition function is entirely known, as
well as the properties of H; this situation corresponds to
the existence of a single pure state and replica symmetry
(RS). Otherwise, some reduced Hamiltonian H0 involv-
ing a subset S0 of the original set of spins S has to be
treated. The ground states (GS) of H0 can be interpreted as
seeds for the (low temperature) pure states of H. More
precisely, all GS in a pure state of H can be reconstructed
when backtracking the original decimation procedure
from the seed of this cluster. Analysis of the statistical
properties of seeds in the S0 space, and of the reconstruc-
tion process, provides a full characterization of the struc-
ture of GS in the S space.

The model we consider is the so-called 3-spins Ising
spin glass. M triplets of distinct integers im < jm < km are
randomly chosen in the range 1; . . . ; N; plaquette m,
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Hamiltonian

H � �
XM
m�1

JmSimSjmSkm (1)

equals �M plus twice the number of frustrated pla-
quettes. We shall use c to denote the number of plaquettes
per spin, M=N. The thermodynamical properties of
model (1) were first investigated when all spins interact
together, i.e., in the limit of large ratios c [3,4]. Three
phases were found. When the temperature T is larger than
Td�c� � 0:68

���
c

p
, the system is paramagnetic (RS phase)

[4]. At low temperatures T < Ts�c� � 0:65
���
c

p
[3], the

system is trapped in one of the few existing glassy pure
states. In the intermediate range Ts < T < Td, there exist
an exponential number of glassy pure states, separated by
infinite barriers [4].

As the ratio c of plaquettes (interactions) per spin
decreases, so do the temperatures Td and Ts. The ratios
cd ’ 0:818 and cs ’ 0:918, at which they, respectively,
vanish, have been calculated in the framework of one
step RSB theory [5], with the following zero temperature
picture [6]. For c < cs (respectively, c > cs�, the ground
state (GS) of Hamiltonian (1) are unfrustrated (respec-
tively, frustrated), i.e., have an energy per spin equal to
(respectively, larger than) �c. In the unfrustrated phase,
the number of GS scales as 2Ns where the zero tempera-
ture entropy simply equals s � 1� c (base 2 logarithm)
(Fig. 1). With high probability, two GS differ by a number
of spins equal to Nd with d � 1=2. The spatial organiza-
tion of GS in the space of configurations S (N-dimensional
hypercube) undergoes a drastic change at cd (Fig. 1),
reminiscent of the ergodicity breaking taking place at
Td�c�. The set of GS breaks into a large number, 2Ns0 , of
clusters, each containing an exponential number, 2Ns1 , of
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FIG. 2. Graph representation of the 3-spins Hamiltonian.
Vertices (spins) are joined by plaquettes (values �1 of cou-
plings are not shown here). A step of decimation consists in
listing all 1-spins (gray vertices), choosing randomly one of
them (gray vertex pointed by the arrow), and eliminating this
spin and its plaquette. New 1-spins may appear. Decimation is
repeated until no 1-spin is left.

0 0.5 1
ratio c of plaquettes per spin

0

0.5

1
G

ro
un

d 
st

at
es

 e
nt

ro
pi

es
 

d0
s

s0

cd s

s1

d

d1

c

FIG. 1. GS structure and entropies as a function of the ratio c
of plaquettes per spin. The total entropy (log number of
unfrustrated GS per spin) is s � 1� c for c < cs ’ 0:918.
For c < cd ’ 0:818, GS are uniformly scattered on the
N-dimensional hypercube, with a typical normalized
Hamming distance d � 1=2. At cd, the GS space discontinu-
ously breaks into disjoint clusters: The Hamming distance d1 ’
0:14 between solutions inside a cluster is much smaller than the
typical distance d0 � 1=2 between two clusters (RSB transi-
tion). The entropy of clusters, s0, and of solutions in each
cluster, s1, are such that s0 
 s1 � s. At cs, the number of
clusters ceases to be exponentially large (s0 � 0). Above cs, GS
are frustrated.
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a cluster, the distance is smaller, and equal to d1 �
�1� b�=2. b, the largest root of

b � 1� e�3c b2 ; (2)

measures the size of the cluster backbone, i.e., the fraction
of spins common to all GS in a cluster. The entropies of
clusters, s0 � b� 3cb2 
 2cb3, and GS in a cluster, s1 �
s� s0, are shown in Fig. 1 [5]. At cd, the total entropy s is
analytic in c, while the order parameter b, the entropies
s0, s1 undergo discontinuous (first order) jumps, e.g., from
b�d � 0 to b
d ’ 0:71.

We now sketch how the above results may be found
back rigorously. The techniques used are borrowed from
probability theory, and the analysis of algorithms. Their
use was suggested from the close relationship between
Hamiltonian (1) and the random 3-XORSAToptimization
problem [5,7,8]. Let us call ‘-spin a spin which appears in
‘ distinct plaquettes in (1). Plaquettes containing at least a
1-spin are never frustrated. Our decimation procedure
consists in a recursive elimination of these plaquettes
and attached 1-spins (Fig. 2), until no 1-spin is left [9].
We define the numbers N‘�T� of ‘-spins after T steps of
the decimation algorithm, i.e., once T plaquettes have
been removed, and their set N �T� � fN‘�T�; ‘ � 0g.
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The variations of the N‘ during the �T 
 1�th step of
the algorithm are stochastic variables due to the random-
ness in (1) and the choice of the 1-spin to be removed, with
conditional expectations with respect to N �T� given by

E�N‘�T 
 1� � N‘�T�jN �T�� � 2p‘
1�T� � 2p‘�T�


 �‘;0 � �‘;1; (3)

where � denotes the Kronecker function. When a pla-
quette is removed, a 1-spin disappears [�‘;1 term in (3)]
to become a 0-spin (�‘;0). The plaquette contains two
other spins. The number of occurrences ‘ of each of these
two spins is distributed with probability p‘�T� �
‘N‘�T�=3=�M� T�, and is diminished by one once the
plaquette is taken away. For large sizes N, the densities
n‘ � N‘=N of ‘-spins become self-averaging, and evolve
on a long time scale of the order of N [10]. Defining the
reduced time t � T=N, the densities obey a set of coupled
differential equations which can be deduced from (3),

dn‘
dt

�
2��‘
 1�n‘
1�t� � ‘n‘�t��

3�c� t�

 �‘;0 � �‘;1: (4)

Initially, densities are Poisson distributed: n‘�0� �
e�3c �3c�‘=‘!. Equation (4) may be solved, with the result

n1�t� � 3cb�t�2�e�3cb�t�2 
 b�t� � 1�; (5)

where b�t� � �1� t=c�1=3, while n‘�t� is given by a
Poisson distribution of parameter 3cb�t�2 for ‘ � 2.
The density of 1-spins is shown in Fig. 3 for various
initial plaquettes per spin ratios c. The algorithm stops
at the time t� for which n1 vanishes, that is, when no
1-spin is left. From Eq. (5), b�t�� coincides with b defined
in Eq. (2) [11].

What does the reduced Hamiltonian H0 look like once
the decimation has stopped? For c < cd, t� � c, and no
spin and plaquette is left. The entropy s of GS of H can be
047205-2
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FIG. 3. Evolution of the density of 1-spins n1�t� generated by
the decimation procedure. For c < cd ’ 0:818, n1�t� remains
positive until all the plaquettes are eliminated at t� � c. For
c > cd, the decimation procedure stops at the time t� for which
n1 vanishes (black dots), and the solution of Eq. (4) is non-
physical for t > t� (dashed part of the curves). Notice that t�

discontinuously jumps down at c � cd (first order transition).
Inset: Plaquette density c0 for the reduced Hamiltonian H0 vs c.
At c � cd, c0 discontinuously jumps to a positive value; the
threshold c0 � 1 for the disappearance of unfrustrated GS is
reached for cs ’ 0:918.
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computed recursively. Each time a plaquette containing
v�� 1� 1-spins and these v vertices are removed (Fig. 2),
the number of GS gets divided by 2v�1, and the
average entropy (base 2 logarithm) of GS decreased by
E�v� 1jN �T�� � 2p1�T�. As no spin is left when the
algorithm stops, the final value for the entropy vanishes,
giving

s �
Z t�

0
dt

2n1�t�
3�c� t�


 e�3c; (6)

where the last term comes from the contribution n0�0� of
0-spins. Using Eq. (5) and t� � c, we find back s � 1� c.
When cd < c < cs, the decimation procedure stops at
t� < c, and has not succeeded in eliminating all pla-
quettes and spins. The remaining fraction of plaquettes
per spin, c0 � �c� t��=�, where � �

P
‘�2 n‘�t

��, is plot-
ted as a function of c in the inset of Fig. 3. Each GS of H0

can be seen as a seed from which a cluster of GS of H in
the original configuration space can be reconstructed. To
do so, plaquettes which were eliminated during decima-
tion are reintroduced, one after the other, and the spins
they contain are assigned all possible values that leave the
plaquettes unfrustrated. Combining any of these partial
spin assignments with (free) 0-spin assignments, all the
GS in a cluster are obtained. Repeating the argument
leading to the calculation of the entropy in the c < cd
047205-3
case, we find that the average entropy s1 of GS in a cluster
is given by the right-hand side of Eq. (6), and agrees with
the RSB prediction.

To complete the description of clusters, some statistical
knowledge about their seeds is required. The number U0

of GS of H0 can be analyzed by means of the first and
second moments method [12], giving, respectively, some
upper and lower bound to the probability Pr�U0 � 1� of
existence of unfrustrated GS,

E�U0�2

E�U02�
� Pr�U0 � 1� � E�U0�: (7)

The right inequality is a consequence of the Markov
bound for positive variables, Pr�U0 � a� � E�U0�=a,
with a � 1, while the left inequality can be established
from the Cauchy-Schwarz inequality, E�U0 �V �2 �
E�U02� �E�V 2�, taking V � 1� �U0;0. As shown be-
low, the lower and upper bounds to the threshold c0s
separating unfrustrated and frustrated phases obtained
from Eq. (7) coincide, which allows an exact determina-
tion of c0s.

In the limit of a large number N0 of nondecimated
spins, the first moment depends only on the numbers of
spins and plaquettes: E�U0� � 2N

0�1�c0�. From (7), we
conclude that U0 almost surely vanishes when c0 > 1.
On the contrary, the second moment is affected by the
existence of contraints on the minimal number (two) of
occurrences of spins in H0. Its computation requires a
combinatorial analysis of the number of Hamiltonians H,
i.e., ways of choosing plaquettes and couplings in (1),
having a given pair of configurations for GS. As this
number depends only on the distance d0 between the
two configurations, E�U02� may be expressed as a com-
binatorial sum involving level-2 generalized Stirling
numbers of the second kind, i.e., the number of ways to
partition objects (spins in plaquettes) into subsets (spin
indices) having each at least two elements [8]. Very gen-
eral asymptotic estimates for these have recently been
found, which involve parameters implicitly defined by
transcendental saddle-point equations [13]. In the present
case and for c0 < 1, our sum has just one dominant
exponential term, which is precisely the square of the
first moment, 4N

0�1�c0�. This statement remains true when
nonexponential (in N) contributions to the moments are
calculated. So, for c0 < 1 and N0 ! 1, the left-hand side
of (7) is asymptotically equal to unity, and GS are almost
surely unfrustrated. The value cs of c giving c0 � 1 is
found from the analysis of the algorithm (inset of Fig. 3)
to be ’ 0:918. In addition, the entropy s00 � 1� c0 of GS
allows one to find back the RSB expression for the en-
tropy of clusters, s0 � �s00.

The self-averageness of U0, i.e., of the partition func-
tion Z0 ’ U0eM

0=T in the low temperature T ! 0 limit,
contrasts with the (sample-to-sample) fluctuations ex-
hibited by U. Indeed, a direct application of inequalities
047205-3
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(7) to U only permits to derive upper (cs � 1) and lower
(cs � 0:889) bounds to the threshold [7]. Fluctuations of
U thus essentially come from fluctuations in the numbers
of 0- and 1-spins (whose plaquettes form the dangling
ends of the graph in Fig. 2) removed by the decimation
algorithm. Conversely, in H0, spins appear at least twice
and are more interconnected, giving rise to weaker fluc-
tuations for U0.

The reconstruction process allows a complete charac-
terization of GS, in terms of an extensive number of
(possibly overlapping) blocks made of few spins, each
block being allowed to flip as a whole from a GS to
another. When c < cd, with high probability, two ran-
domly picked GS differ over a fraction d � 1=2 of spins,
but are connected through a sequence of O�N� successive
GS differing over O�1� spins only. For cd < c < cs, flip-
pable blocks are juxtaposed to a set of seed-dependent
frozen spins. To prove the existence of clustering pre-
dicted by RSB (Fig. 1), we have checked that the largest
Hamming distance dmax

1 between two GS associated to
the same seed is lower than the smallest possible distance
dmin
0 between GS reconstructed from two different seeds.

We have estimated dmin
0 as a function of c using again the

first moment method, i.e., from the vanishing condition of
the expectation number E�U02jd0� of GS lying apart at
distance � d0. As for dmax

1 , each time a plaquette with
v � 2 1-spins is reintroduced, the distance between re-
constructed GS increases by 2=N at most, leading to
dmax
1 � 2

R
t�
0 dtp1�2� p1� 
 e�3c.

The above results may be extended to multi-p-spin
interactions with p � 3, with results in agreement with
replica theory: The p � 4 case is qualitatively similar to
p � 3; for p � 2, cd � cs � 1=2 both coincide with the
percolation threshold. Another extension regards finite
temperature. For c < cd, the decimation algorithm allows
a complete calculation of the free energy.Whether 1-spins
are set to frustrate, or unfrustrate, the plaquette they
belong to, the energy is increased, or decreased by
one. The resulting free energy density equals f�T� �
�T ln2� cT lncosh�1=T� in agreement with the replica
paramagnetic calculation [5]. The same expression for f
is likely to be established for cd < c < cs through an
extension of the above approach. Investigation of the
frustrated region, c > cs, is currently under way, and
would ultimately permit a rigorous construction of the
continuous RSB phase. Our results also shed some
light on the observed coincidence between the onset of
RSB and the failure of a leaf removal algorithm in the
vertex covering of random graphs [14]. Finally, it would
be interesting to see how our spin decimation approach
could be extended to other distributions of random
lattices.
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