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The anomalous Hall effect arising from the noncoplanar spin configuration (chirality) is discussed as
a probe of the chiral order in spin glasses. It is shown that the Hall coefficient yields direct information
about the linear and nonlinear chiral susceptibilities of the spin sector, which has been hard to obtain
experimentally from the standard magnetic measurements. Based on the chirality scenario of spin-glass
transition, predictions are given on the behavior of the Hall resistivity of canonical spin glasses.
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The chirality defined above is often called a scalar chir-
Under such circumstances, the purpose of the present

Letter is twofold. First, on the basis of the formula derived
For decades, spin glasses have been extensively studied
as a prototype of ‘‘complex’’ systems characterized by
both ‘‘frustration’’ and ‘‘randomness’’ [1]. Among a wide
variety of spin-glass (SG) materials, most familiar and
well studied is perhaps the so-called canonical SG, a
dilute noble metal=3d transition metal alloys. In canoni-
cal SG, the interaction between localized moments is the
RKKY interaction which is mediated by conduction elec-
trons via the s-d exchange coupling Jsd. The oscillating
nature of the RKKY interaction with distance, combined
with spatially random arrangement of localized mo-
ments, gives rise to frustration and randomness. Since
the RKKY interaction is isotropic in spin space, canonical
SG, similar to many other SGs, is nearly isotropic in
spin space, and is expected to be well modeled by the
Heisenberg model. Weak magnetic anisotropy is mostly
due to the Dzyaloshinski-Moriya (DM) interaction
caused by the combined effect of the s-d coupling and
the spin-orbit interaction. The nearly isotropic character
of the magnetic interaction in canonical SG is in apparent
contrast to most of theoretical approaches which have
been based on the Ising model describing the extremely
anisotropic limit [1].

Experimentally, it is now well established that typical
SG magnets including canonical SG exhibit an equilib-
rium phase transition at a finite temperature and there
exists a thermodynamic SG phase. The true nature of the
SG transition and of the SG ordered state, however, still
remains elusive in spite of extensive studies [1].

Although standard theories of the SG order invoke the
Ising model as a minimal model, a scenario very differ-
ent from the standard picture was proposed by the present
author, which may be called a chirality scenario [2,3]. In
this scenario, chirality, which is a multispin quantity
representing the sense or the handedness of local non-
coplanar structure of Heisenberg spins, plays an essential
role. The local chirality may be defined for three neigh-
boring Heisenberg spins by the scalar,

�ijk � ~SSi � ~SSj � ~SSj: (1)
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ality: It takes a nonzero value when the three spins span
the noncoplanar configuration in spin space, whose sign is
representing the handedness of such noncoplanar spin
configuration.

The chirality scenario of SG transition consists of two
parts [2,3]: In a fully isotropic Heisenberg SG, it claims
the occurrence of a novel chiral-glass ordered state in
which only the chirality exhibits a glassy long-range
order keeping the Heisenberg spin paramagnetic (spin-
chirality decoupling). In a weakly anisotropic Heisenberg
SG, the scenario claims that the weak random magnetic
anisotropy ‘‘recouples’’ the spin to the chirality, and the
chiral-glass order of the fully isotropic system shows up
in the spin sector as the standard SG order via the mag-
netic anisotropy (spin-chirality recoupling). In other
words, the experimental SG transition and the SG ordered
state are the chiral-glass transition and the chiral-glass
ordered state of the fully isotropic system ‘‘revealed’’
by the weak random magnetic anisotropy inherent to
real SG.

Thus far, an experimental test of the chirality scenario
remains indirect. This is mainly due to the experimental
difficulty in directly measuring the chirality. A possible
clue to overcome this difficulty was recently found via the
study of electron transport properties of certain magnets
in which conduction electrons interact with the core spins
possessing chiral degrees of freedom. In particular, it has
been realized that under appropriate conditions a chiral-
ity contribution shows up in the anomalous part of the
Hall effect. This was first pointed out in the strong cou-
pling case where the conduction electrons are strongly
coupled with core spins via the Hund coupling, as in the
cases of manganites [4,5] and in frustrated Kagomé [6],
or pyrochlore ferromagnet [7,8] (see also Ref. [9]). In the
weak-coupling case which is more relevant to canonical
SG, chirality contribution to the anomalous Hall effect
was examined by Tatara and Kawamura [10]. By applying
the linear response theory and the perturbation expansion
to the standard s-d Hamiltonian, these authors derived
the chirality contribution to the Hall resistivity.
2003 The American Physical Society 047202-1



P H Y S I C A L R E V I E W L E T T E R S week ending
31 JANUARY 2003VOLUME 90, NUMBER 4
in Ref. [10], I wish to explore in some detail the properties
of the Hall resistivity at the SG transition with particular
interest in the chirality contribution, and propose the way
to extract information about the chiral order of the spin
sector from the experimental data. Second, on the basis of
the aforementioned chirality theory of SG transition, I
present several predictions on the expected behavior of
the anomalous part of the Hall resistivity, which might
serve as an experimental test of the chirality theory. In
the following, I will discuss these two issues successively.

Conduction electrons on the lattice with N sites are
coupled with core spins (assumed to be classical and
fixed) via the standard s-d exchange interaction Jsd, and
are also scattered by normal impurities. Assuming the
weak-coupling regime in which Jsd is smaller than the
Fermi energy 
F, the first nonzero contribution to the Hall
conductivity comes from the third-order term in the
perturbation, which can be recast into the Hall resistivity
as

��chiral�xy � 54�2�0

�
Jsd

F

�
2
Jsd��0 � CJ3sd�0; (2)

�0 �
1

6Nk2F

X
ijk

�ijk

�
�~rrij � ~rrjk�z
rijrjk

I0�rij�I0�rjk�I�rki�

� �two permutations�
�
; (3)

where �0 is the Boltzmann resistivity, � is the mean
collision time, kF is the Fermi wave number, and �ijk
represents the local chirality defined by Eq. (1), ~rrij �
~rri � ~rrj, etc., with rij 	 j~rrijj, etc. I�r� represents a func-
tion decaying as I�r� � ��sinkFr�=�kFr��e

�r=2‘, with ‘
being the electron mean-free path, and I0�r� �
�dI�r��=�dr�. One sees from Eq. (3) that �0 is a total
(net) chirality, while the factor in the square bracket in
Eq. (3) specifies the coupling between the spin space and
the real space. In canonical SG, Jsd is positive. The
coefficient C is positive in the single-band approximation
but, more generally, its sign would depend on the detailed
band structure of the material.

By contrast, conventional theories of the anomalous
Hall effect have attributed its origin to the spin-orbit
interaction � and a finite magnetization M [11–13], i.e.,
mechanisms known as the skew scattering or the side
jump. Note that the chirality contribution is independent
of these conventional ones. Taking account of the conven-
tional terms within the perturbation scheme, the anom-
alous part of the Hall resistivity has been given by

�xy � ��M�A�� B�2� � CJ3sd�0

� �M�~AA�� ~BB�2� � ~CC�0; (4)

where � is the longitudinal resistivity � � �xx, A and B
are constants both positive within the single-band ap-
proximation [10], and ~AA � A�, ~BB � B�, and ~CC � CJ3.
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Since Heisenberg spins are frozen in a spatially random
manner in the SG ordered state, the sign of the local
chirality appears randomly, which inevitably leads to
the vanishing total chirality in the bulk, �0 � 0. It thus
appears that the chirality-driven anomalous Hall effect
vanishes in bulk SG samples. In the strong coupling case,
however, a mechanism out of this cancellation was pro-
posed by Ye et al. [4]. These authors pointed out that the
spin-orbit interaction � in the presence of a net magneti-
zation M contains a term of the form

H so 
 ~DDM�0; (5)

which, in the spin Hamiltonian, couples the total chir-
ality to the total magnetization. In the weak-coupling
regime relevant to canonical SG, a term of the form (5)
with ~DD � D��Jsd=
F�

2�J��2 was also derived perturba-
tively by taking the electron trace of the spin-orbit inter-
action [10]. The sign of the coefficient D generally
depends on the detailed band structure [10], while Ye
et al. argued that ~DD should be positive [4]. In any case,
a crucial observation here is that the weak chiral symme-
try-breaking term (5) guarantees a net total chirality to
be induced if the sample is magnetized. Net magnetiza-
tion may be generated spontaneously (ferromagnet or
reentrant SG) or induced by applying external fields.

I now go on to analyze the behavior of the anomalous
Hall resistivity of SG based on Eqs. (4) and (5). I assume
for the time being that the system does not possess a
spontaneous magnetization; namely, the magnetization
is the one induced by external magnetic field H.

The quantities playing a crucial role in the following
analysis are the linear and nonlinear chiral susceptibili-
ties, defined by

X� �
d�0

dH�

�������H��0
; Xnl� �

1

6

d3�0

dH3
�

�������H��0
; (6)

where H� is the ‘‘chiral field’’ conjugate to the net chir-
ality �0, i.e., H� couples to the net chirality as �H��0 in
the spin Hamiltonian. Note that the chiral symmetry-
breaking interaction discussed above, Eq. (5), has exactly
this form with H� � � ~DDM.

With use of the linear and nonlinear chiral suscepti-
bilities, the total chirality can be written as

�0 � �X�� ~DDM� � Xnl� � ~DDM�3 � � � � : (7)

If one substitutes this into Eq. (4), one gets the chirality
contribution to the anomalous part of the Hall resistivity
as

��chiral�xy � �~CC ~DDM�X� � X
nl
� � ~DDM�2 � � � ��: (8)

Including the contributions of the skew scattering and
the side jump, the Hall coefficient Rs, defined as the
anomalous Hall resistivity divided by the magnetization
Rs � �xy=M, is given by
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Rs � �~AA�� ~BB�2 � ~CC ~DD�X� � Xnl� � ~DDM�2 � � � ��: (9)

The total Hall resistivity contains in addition the contri-
bution from the normal part, which, we assume through-
out this analysis, has properly been subtracted. One can
immediately see from Eq. (9) that the anomalous Hall
coefficient Rs carries information of the chiral suscepti-
bilities. In particular, in the linear regime where the
magnetization is sufficiently small and the Hall resistivity
is proportional to M, the chirality contribution to Rs is
proportional to the linear chiral susceptibility X�.

In the standard measurements of Hall resistivity, the dc
magnetic field is applied, either in field-cooling (FC) or
zero-field-cooling (ZFC) conditions. As is well known, at
the SG transition temperature T � Tg, the linear mag-
netic susceptibility Xm � ��dM�=�dH��H�0 (to be distin-
guished from the linear chiral susceptibility) exhibits a
cusp accompanied by the onset of deviation between
the FC and ZFC susceptibilities [1]. Sharp cusp of the
linear susceptibility at T � Tg is known to be rounded
off by applying weak external magnetic fields, which
is also manifested in the well-known negative di-
vergence of the nonlinear magnetic susceptibility Xnlm �
�1=6���d3M�=�dH3��H�0 at T � Tg[1]. By contrast, the
resistivity � of canonical SG exhibits no detectable
anomaly at T � Tg[1].

The Hall resistivity is generally given by the combina-
tion of both the magnetic and chiral susceptibilities, as
seen from Eq. (8) with M � XmH � XnlmH

3 � � � � . By
contrast, one can extract information solely about the
chiral susceptibilities from the Hall coefficient Rs which
is obtained by dividing the Hall resistivity by the mag-
netization measured simultaneously or in the same con-
dition. Here, note that the magnetization of SG exhibits a
singular behavior at T � Tg. Furthermore, by examining
theM dependence of the Hall coefficient in the nonlinear
regime, one can extract information about the nonlinear
chiral susceptibility. Anyway, in contrast to the standard
magnetic susceptibilities measurable by the conventional
technique, information about the chiral susceptibilities
have thus far been hard to get experimentally and, if
measurable as above, would be very valuable.

Next, I wish to give predictions on the behavior of the
anomalous Hall coefficient based on the chirality sce-
nario of SG transition [2,3]. The chirality scenario pre-
dicts that, in both isotropic and weakly anisotropic
Heisenberg SGs, the chirality behaves as an order pa-
rameter of the transition (chiral-glass transition). The
singular part of the free energy should satisfy the scaling
form,

fs 
 jtj2+��,�F�

�
H2
�

jtj+��,�

�
; (10)

where +� and ,� are the chiral-glass order parameter and
chiral-glass susceptibility exponents, respectively, t 	
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�T � Tg�=Tg is a reduced temperature, and F��x� is a
scaling function either above ( � ) and below ( � ) Tg.
Numerical estimates give +� � 1 and ,� � 2 [14,15]. By
differentiating Eq. (10) with respect to H� and putting
H� � 0, one sees that at T � Tg the linear chiral suscep-
tibility exhibits a cusplike singularity while the nonlinear
chiral susceptibility exhibits a negative divergence,

X� 
 c���
0 jtj+� � b0�t�; Xnl� 
 c���

2 jtj�,� � b2�t�;

(11)

with +� � 1 and ,� � 2, where c���
0 < 0 and c���

2 < 0 are
constants describing either above or below Tg, while
b0�t� > 0 and b2�t� represent regular terms coming
from the nonsingular part. Concerning the standard mag-
netic susceptibilities, the chirality scenario predicts that,
in the realistic case of weakly anisotropic Heisenberg SG,
Xm and Xnlm exhibit the same singularities as X� and Xnl� ,
which are caused by the spin-chirality recoupling due to
the random magnetic anisotropy. (In the hypothetical
limit of zero anisotropy, because of the spin-chirality
decoupling in the isotropic system, Xm and Xnlm are pre-
dicted to exhibit less singular behaviors very different
from those of X� and Xnl� . But, after all, a certain amount
of anisotropy is inevitable in real SG, which eventually
causes the spin-chirality recoupling.)

The anomalous Hall coefficient of SG should be domi-
nated by the singular behaviors of the chiral susceptibil-
ities, since the first and second terms of the right-hand
side of Eq. (9) can be regarded as a regular background
because of the nonsingular behavior of �. By combining
the observations above, the following predictions follow.
(i) The linear part of Rs, which is Rs itself in the linear
regime where Rs is proportional to the magnetization M,
exhibits a cusplike anomaly at T � Tg, possibly accom-
panied by the onset of the deviation between the FC and
ZFC results. This cusplike singularity is rounded off in
the presence of a finite magnetization. (ii) The nonlinear
part of Rs, which can be extracted by examining the M
dependence of Rs in the nonlinear regime, exhibits a
divergence at T � Tg characterized by the exponent
,� � 2, which is equal to the standard nonlinear suscep-
tibility exponent ,. (iii) The chiral part of Rs, obtained
by properly subtracting the background due to the pos-
sible contribution of the skew scattering and the side
jump, etc., is expected to obey the scaling form,

R�chiral�
s 
 jtj+�G�

�
M2

jtj+��,�

�
; (12)

where G��x� is a scaling function either above or below
Tg. The subtraction of the background might be per-
formed by analyzing the temperature dependence of Rs
based on Eq. (9), using the data of the resistivity �. (iv)
The sign of the Hall resistivity depends on the signs and
the relative magnitudes of constants ~AA, ~BB, ~CC, and ~DD (X� is
positive by definition). Hence, the sign of �xy seems
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nonuniversal, depending on the band structure of the
material. In cases where the single-band approximation
and the naive argument of Ref. [4] concerning the sign of
~DD are valid, one has ~CC > 0 (with Jsd > 0) and ~DD > 0,
which means ��chiral�xy is negative in canonical SG. This
seems consistent with experiment [16,17]. The cusplike
singularity was observed there at least in the Hall resis-
tivity [16,17], consistent with the present result.

Note that even the conventional mechanism of the
anomalous Hall effect (the skew-scattering or the side-
jump mechanism) predicts that the Hall resistivity exhib-
its a cusplike singularity at T � Tg, which is a reflection
of the cusplike singularity of the magnetic susceptibility.
However, the conventional mechanism also predicts that
the Hall coefficient Rs behaves in a nonsingular manner at
T � Tg as � and �2. A highly nontrivial issue is then
whether the Hall coefficient, not just the Hall resistivity,
exhibits an anomaly at T � Tg. If singular behavior is
observed in Rs, it is likely to be of chirality origin.

One can give a rough order estimate of ��chiral�xy . In
typical canonical SG such as AuFe and CuMn, Jsd=
F
and J� are of order 10�1 and 100, respectively. Then, from
Eq. (2), ��chiral�xy is estimated to be of orderM�0 in units of
�0. Since the magnitude of the chiral symmetry-breaking
interaction (5) is of the order of the DM interac-
tion, the induced chirality �0 is of the order of
�DM interaction�=�RKKY interaction�. This ratio is a
material dependent parameter, being small for CuMn,
for example, 10�2, and relatively large for AuFe, for
example, 10�1 or more. Thus, if the sample is magnetized
10% of the saturation value, one expects for AuFe ��chiral�xy

of order percents of �0 or even more. For more isotropic
materials such as CuMn and AgMn, the chiral contribu-
tion would be reduced being proportional to the strength
of the DM interaction.

Finally, I wish to discuss the reentrant SG with a
spontaneous magnetization.With decreasing temperature,
the reentrant SG exhibits successive transitions, first from
para to ferro at T � Tc, then from ferro to reentrant SG at
T � Tg. The present result for the Hall resistivity also
applies to such reentrant SG around T � Tg, only if M is
treated as including the spontaneous magnetization.
Below T � Tg, an additional contribution from the chiral
order sets in, giving rise to a cusp in the Hall resistivity at
T � Tg. As often observed under FC conditions, magne-
tization of reentrant SG is saturated at temperatures far
above Tg, with very little anomaly at T � Tg. In such a
case, if anomaly is observed in the FC mode in the Hall
resistivity at T � Tg, this can be identified as arising from
the chirality. Indeed, a cusplike anomaly at T � Tg
was recently observed in manganite reentrant SG
La1:2Sr1:8Mn2O7 [18] and in reentrant SG alloy Fe1�xAlx
[19], suggesting that the observed anomaly is of chirality
origin.

In summary, I examined the Hall resistivity of canoni-
cal SG, and have found that the Hall coefficient gives
047202-4
information about the linear and nonlinear chiral suscep-
tibilities of SG. Based on the chirality scenario, predic-
tions were given on the behavior of the Hall coefficient of
canonical SG. I hope the present work will stimulate
further experimental activities on the chiral order and
the Hall resistivity of SG and related materials.

The author is thankful to Dr. M. Sato, Dr. S.
Kawarazaki, Dr. T. Taniguchi, and Dr. G. Tatara for useful
discussions.
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