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We propose a new state of matter in which the pairing interactions carve out a gap within the interior
of a large Fermi ball, while the exterior surface remains gapless. This defines a system which contains
both a superfluid and a normal Fermi liquid simultaneously, with both gapped and gapless quasiparticle
excitations. The universality class of this state can be realized at weak coupling. We predict that a cold
mixture of two species of fermionic atoms with different mass will exhibit this state. For electrons in
appropriate solids, it would define a material that is simultaneously superconducting and metallic.
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states of cold K or Li atoms as prepared in experi-
ments [7–10]), it can be favorable to equalize the Fermi

of the noninteracting system. If the Fermi surfaces
matched, the attractive interaction would trigger standard
Recent developments in ultracold alkali atomic gases
[1] have revitalized interest in some basic qualitative
questions of quantum many-body theory, because they
promise to make a wide variety of conceptually interest-
ing parameter regimes, which might previously have
seemed academic or excessively special, experimentally
accessible. With this motivation, and stimulated by ques-
tions in quantum chromodynamics (QCD) at high density
[2–4], we here revisit the question of fermion pairing
between species whose Fermi surfaces do not precisely
match. We have found a possibility that seems to be new
and certainly is interesting, and which could turn out to
be relevant even for conventional solids.

The standard Bardeen-Cooper-Schrieffer (BCS) [5]
theory of superconductivity describes pairing between
particles of equal and opposite momentum near a com-
mon Fermi surface. For classic s-wave superconductors
the pairing occurs between electrons of opposite spin. In
the presence of a weak magnetic field, and, in particular,
in the case of ferromagnetic order, the Fermi surfaces of
the opposite spins will not match, and the Cooper pairing
instability, which was enhanced by vanishing energy
denominators, will no longer occur at arbitrarily weak
coupling. Larkin and Ovchinnikov and independently
Fulde and Ferrell [6] showed that in this circumstance it
might be favorable to effectively relatively translate the
Fermi surfaces, pairing at a nonzero total momentum
(LOFF phase).

A simpler situation, conceptually, is that pairing occurs
between two species whose Fermi surfaces do not match
simply because their densities or effective masses differ.
This possibility arises in several contexts. (i) In ultracold
atom systems, it could occur simply because there are
atoms of different elements. (ii) In solids it could occur
for electron populations in two different bands. (iii) In
QCD it occurs for different species of quarks (up, down,
strange). If the mismatch is small and the two species are
alternative states of the same particle (such as the spin
up and down states of electrons or two hyperfine-spin
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surfaces, absorbing a cost in kinetic energy, and then to
pair at zero momentum following BCS. For larger mis-
matches, LOFF-type ordering can occur. More elaborate
forms of position-dependent ordering, with the superfluid
gap having standing wave or even crystalline structure,
have been found to be favorable in models of QCD at high
density [11].

None of these possibilities, however, extrapolates to
what we might expect at strong coupling. Given strong
attraction between the species, we would just expect to
bind as many paired quasimolecules as possible. At low
temperature, these quasimolecules will form a Bose-
Einstein condensate. The residual unpaired particles
will constitute a separate normal fluid. It is natural to
inquire whether there is a weak-coupling phase that
matches this behavior qualitatively. We now identify
such a phase.

Consider a homogeneous fermion gas in three dimen-
sions containing two species (� � A;B) obeying simple
parabolic dispersion relations, described by the
Hamiltonian

H �
X
p�

��p 
�y
p  �p � g

X
pp0q

 y
Aq�p 

y
Bq�p Bq�p0 Aq�p0 ; (1)

where ���p� � p2=2m� ���. See Fig. 1. (More pre-
cisely, we assume that this interaction exists so long as
the momenta of the particles are within a strip of size 
around the smaller Fermi surface;  will later serve as an
ultraviolet cutoff.) Our heuristic analysis will not distin-
guish whether or not the species are strictly conserved
separately. We define chemical potentials so that the
Fermi surfaces for both species are at �F � 0. We shall
be interested in cases where mA <mB and �A > �B, in
such a way that the Fermi momentum for the species B is
greater than that for the species A, pBF > pAF.

We suppose that there is an attractive effective inter-
action in s wave between particles of different species
(g < 0), and that the coupling is weak, so that we can
construct our ground state by modifying the ground state
2003 The American Physical Society 047002-1



p
F
A p

F
B

 p 
0 

ε(
p)

Fermi 
surfaces

pairing

light fermion

 heavy
fermion

Light 
Fermion

p
F
A

Pairing    
occurs       
along
p=p

F
A

p
F
A < p

F
B 

p
F
B

Heavy   
Fermion

FIG. 1 (color online). The prototype situation where we an-
ticipate formation of an interior gap superfluid at weak cou-
pling. There are two species of fermions with different band
structures, here both taken as isotropic and parabolic, but with
different effective masses and different sizes in momentum
space. When the larger Fermi ball derives from relatively flat
band (large effective mass) and the interaction near the mo-
mentum surface defined by the smaller Fermi sphere is attrac-
tive, it can be favorable to form correlated pairs near this
smaller sphere, even at the cost of promoting some particles
of the heavier species to the exterior Fermi sphere. One will
then have both superfluidity, with a momentum gap at the
smaller sphere, and normal Fermi liquid excitations at the
larger sphere.
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BCS superfluidity, with Cooper pairing of equal and
opposite momenta. The BCS wave function, however,
postulates either zero or double occupancy of the paired
modes, and it is incompatible with keeping the modes of
species B between pAF and pBF completely filled. If we are
to support pairing of total momentum zero we must
promote some particles of species B up to momenta
near pBF, thus carving an interior ‘‘trench’’ of the species
B Fermi sea near momentum p � pAF.

There is competition between the energetic cost of such
promotions and the gain from pair formation, and it may
not be obvious whether there can be a net profit in any
nontrivial case. To assess this, let us suppose that the
pairing introduces a momentum gap of order �. By this
we mean that in an interval of order � around pAF we will
take superpositions of unoccupied and doubly occupied
states, as in ordinary BCS theory. In particular, we do not
automatically fill the single-particle states for species B,
even though they are below the free-particle Fermi mo-
mentum pBF. One could also, more awkwardly but perhaps
more properly, speak of normalized energy gaps of order
�pAF=m� for the two species. However phrased, the point
is that it is important to prepare an equal number of
modes to pair, and state counting takes place in momen-
tum space. The condensation energy must be of the same
energy as the spectral displacement of the particles, so we
have for the energy gain �pair per pair �pair � pAF�= ~mm,
with ~mm 	 mAmB=�mA �mB� the reduced mass. On the
other hand, the density of pairs npair is of the order of
npair � 4�pA2F �. In order to accommodate the depletion of
species B, which is of the same order as the number of
pairs, we must promote a corresponding number of par-
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ticles from pAF to pBF, which costs �1=2mB��p
B2
F � pA2F � per

pair. Putting it all together, to make a net profit we require
�pair � pAF�= ~mm > �pB2F � pA2F �=2mB:

The region of pairing in momentum space will be
strictly in the interior of the larger Fermi surface —
clearly distinct from its boundary — and we will realize
interior gap superfluidity, if pBF � pAF > �. This is com-
patible with our earlier condition for

1 >
pBF � pAF
2pAF

mA

mA �mB
: (2)

This consistency condition can be satisfied, specifically
for mB 
 mA. Note particularly that it is independent of
the gap �. Looking back to our net profit condition, we
see that � can be taken arbitrarily small, for sufficiently
large mB=mA. Thus interior gap superfluidity can take
place at weak coupling, where the mean-field assump-
tions implicit in this heuristic analysis are valid. In the
class of models under discussion, therefore, we find a
robust weak-coupling phase characterized by a (momen-
tum) gapped Fermi surface interior to a surface with
unpaired excitations. For charged fermions, it is a phase
that is simultaneously superconducting and metallic at
zero temperature.

To construct the interior gap ground state explicitly we
generalize the standard BCS wave function as follows

jIGi �
Y

jpjp�

�sin�p � cos�p 
y
Ap 

y
B;�p�

Y
jpj>p�

 y
Bpj0i;

where the �p’s and p� are variational parameters. As
usual, there is a manifold of degenerate states featur-
ing an overall relative phase between the sin�p and
cos�p factors. The order parameter is of usual form:
h y

Ap 
y
B;�piIG� sin�pcos�p. Upon variation with respect

to �p and p�, we find cos2�p�
1
2f1����p =

�����������������������
���p �

2��2
q

�g

and p2� � 1
2 �p

B2
F � pA2F � � 1

2 ��16�
2mAmB � �pB2F �

pA2F �2�1=2, with ��p 	 1
2 ��

A
p � �Bp�. The gap parameter,

defined here as � � �g
P

jpjp�h 
y
Ap 

y
B;�piIG, satisfies

the integral equation 1 � �g
P

jpjp��1=
��������������������
��

2

p � �2
q

�.
An important departure from standard BCS theory

occurs because the energy difference between paired
and unpaired modes no longer becomes arbitrarily small.
For this reason one is not doing degenerate perturbation
theory, and does not encounter a true infrared divergence
(vanishing energy denominators) in the Cooper pairing
channel. As a consequence, the gap equation supports a
nonzero solution only for jgj > gc, with

gc ’ 2
�
N��0� ln

�
p0 

pB2F � pA2F

mA �mB

mA

�	
�1
; (3)

where we have introduced the generalized density of
states N��0� 	

P
p ���

�
p � and p0 is the point where

���p0� � 0. Note, however, that gc ! 0 when mB=
mA ! 1 for fixed pA;BF , so that interior gap superfluid-
ity can be favorable for arbitrarily weak attractive
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interactions, as we anticipated. (Since the dependence on
mB=mA is logarithmic, in practice it may be difficult to
realize the interior gap state at extremely weak coupling.
See Fig. 2 below.) Numerically, we typically find that gc is
rather smaller.

It is straightforward to calculate the condensation en-
ergy. Up to terms of higher order in �, we find

EIG � EN � �
1

2
N��0��

2

�
1

2
� x�earcsinh x�

	
; (4)

where x� � ���p��=2� andEN is the normal state energy
at � � 0. For weak pairing p� is close to pAF, in which
case ���p�� is negative and finite. In the limit �! 0, x�
approaches minus infinity, and the two terms in the brack-
ets cancel. One sees that, for a given gap parameter �, the
interior gap state gains less condensation energy than a
conventional BCS state.

Thus we have demonstrated that the normal state is
unstable against formation of an interior gap superfluid
when the attractive coupling is strong enough, i.e.,
jgj > gc. The LOFF state is another candidate for pairing
of mismatched Fermi surfaces. We have calculated the
ground-state energy difference between these two candi-
date states numerically. Figure 2 shows a typical phase
diagram. We have considered here only the simplest
LOFF state, with pairing order parameter / �LOFFe

iQ�x

with jQj of order pBF � pAF [6,12].
A few remarks concerning this phase diagram are in

order. The critical coupling constant gc in Eq. (3) in prin-
ciple governs the (second-order) phase transition from the
normal state to the interior gap state, rather than that from
the LOFF state. However, we find in our numerical cal-
culation that the phase transition line between the interior
gap and LOFF states roughly coincides with the onset of
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FIG. 2. A typical phase diagram, with the mass ratio
mB=mA � 7. Our coupling constant is g � �4� �h2as= ~mm, where
as is the scattering length for s-wave scattering between
species A and B, and nt � nA � nB is the total density of
particles, calculated using the formula p�F � �6�2n���1=3 as
for a free Fermi gas. �pF 	 pBF � pAF and pavgF 	 1

2 �p
B
F � pAF�.

The dash-dotted line is plotted using the approximate analyti-
cal formula (3), while the solid line is plotted by adapting
Eq. (3.12) of Takada and Izuyama [12] to the case at hand. Were
it plotted directly from our numerical simulations, the phase
transition line between interior gap and LOFF would be
slightly lowered.
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the interior gap ordering. Indeed, since an LOFF particle
pair carries a total momentum Q � 0, the pairing process
in the LOFF state occurs mostly within the intersection of
two closed shells of thickness �, one centered on Q and
the other on zero. The intersection of these shells is a
closed ring of thickness �. By contrast, the interior gap
state pairing occurs within a full two-dimensional shell.
Since the density of states involved in pairing for the
interior gap state is larger than that for the LOFF state,
the former develops an order parameter which increases
(as a function of intrinsic coupling strength) exponen-
tially faster than the latter, and rapidly dominates once it
sets in. On the other hand, the LOFF phase can be realized
also for mA > mB, that is when the heavier fermion has
the smaller Fermi surface, when the interior gap phase is
not available. This is the case of primary interest for
possible phases of quark matter in neutron star interiors,
where the B species is the strange quarks. BCS states
correspond to the region in our phase diagram where
the two species have approximately equal Fermi momen-
tum, �pF � 0.

The average particle occupation number nA;Bp has an
unconventional form. nAp � nBp � cos2�p for jpj  p�,
and nAp � 0 and nBp � 1 for p� < jpj  ~ppBF, where ~ppBF is
the shifted Fermi momentum of species B particle due to
pairing interaction: ~ppBF ’ pBF�1� p0 ~mm�e

arcsinhx�=pB3F �.
Figure 3 shows the average particle occupation number
as a function of momentum at zero temperature. In the in-
terior gap state, the pairing correlation smears the species
A Fermi surface slightly — a fraction of single-particle
states are depleted below pAF and inserted back between
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FIG. 3. (a),(b): A plot of average particle occupation num-
ber nAp and nBp , respectively, in the interior gap superfluid state
in comparison with those in a conventional BCS state. For the
comparison, we assume the same gap parameter and a matched
Fermi surface at p � pAF. (c) Quasiparticle energy spectra to
add a species A or B particle to the system. Corresponding
quasiparticle states are  y

ApjIGi (solid line) and  y
BpjIGi

(dashed line). (d) Quasiparticle energy spectra to remove a
species A or B particle from the system. Corresponding
quasiparticle states are  ApjIGi (solid line) and  BpjIGi
(dashed line).
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the normal state Fermi surface at pAF and the maximum
pairing surface at p�. This distribution does not differ
qualitatively from what one finds in a conventional BCS
superconducting state. Species B displays a more dra-
matic contrast. Some modes that are occupied in the
normal state, in the Fermi ball interior around p � pAF,
are now depleted, and the deficit is made up at the top of
the Fermi surface. This enlarges the Fermi surface from
pBF to ~ppBF. Discontinuities in the distribution nBp occur at
both p� and ~ppBF.

Approximate quasiparticle excitations of the interior
gap state are obtained by diagonalizing the Hamil-
tonian (1) at mean-field level using the Bogoliubov
transformation !y

1p� sin�p 
y
Ap�cos�p B;�p and !y

2;�p�

sin�p B;�p�cos�p 
y
Ap. These operators create quasipar-

ticle excitations !y
1;2;pjIGi from the interior gap super-

fluid state. Their spectra are given by

E1;2�p��
1

2
��Ap��

B
p��

�������������������
��

2

p ��2
q

; (5)

with all energies measured from the shifted Fermi sur-
faces defined by ~ppAF ’ pAF and ~ppBF. Unlike in conventional
BCS theory, there are two branches of excitations: E1�p�
is gapped while E2�p� is gapless at both jpj � p� and
jpj � ~ppFB. Notably, ‘‘�E2p’’ becomes negative for mo-
menta jpj between p� and ~ppBF. This is interpreted con-
sistently as indicating that all such states are filled by
species-B particles (note nAp � 0), and that the abso-
lute value jE2pj is the energy to create a hole excitation
there (Fig. 3).

Given the explicit form of the quasiparticles and their
spectrum, phenomenological consequences can be de-
rived along standard lines. The novelty of the interior
gap state is that a large manifold of low-energy ‘‘normal
state’’ excitations coexists with superfluidity. This spec-
trum could be probed directly in tunneling experiments.
At finite temperature the normal state excitations will be
excited, and the appropriate description will involve a
two-fluid model incorporating dissipation. In these re-
gards there is some resemblance to conventional super-
fluids whose order parameter has nodes, such as the
p-wave superfluid in liquid 3He, or the d-wave super-
conducting cuprates. But these states differ from interior
gap superfluids both quantitatively, in that the density of
gapless modes is much smaller, and qualitatively, in that
they involve breaking of rotational symmetry. Another
partial analog is the Abrikosov-Gor’kov gapless super-
conductivity with magnetic impurities [13]; but of course
here we do have a gap, and impurities are not a cen-
tral issue.

Interior gap superfluidity will be realized in a two-
species mixture of fermionic cold atoms with different
mass. Recent theoretical [14–19] and experimental [7–10]
efforts point to the possibility of superfluidity in two-
state mixtures of 6Li or 40K atoms. A stable mixture with
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different mass could be realized, for instance, in the 6Li
and 40K atomic gas [20]. Despite its qualitative difference
from BCS-type states, the interior gap state is estimated
to have a superfluid transition temperature of the same
order as that of Refs. [14–19], for not too weak coupling.

Also, we perceive no problem of principle forbidding
the realization of interior gap superfluidity in electron
gases, where the species are electrons from different
bands, which can have markedly different effective
masses. The case of electrons coming from two bands
differs, however, from the atomic case in that one should
specify a single density and an energy offset between
band minima, instead of two independent densities (or
chemical potentials). There can be phase transitions as a
function of the single density, for example, between in-
terior gap and conventional BCS-type order. Also, of
course, the dispersion relations can be different from
simple parabolas, which has interesting consequences.
We shall return to these questions in a future publication.
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