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Charge Transport Transitions and Scaling in Disordered Arrays of Metallic Dots
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We examine the charge transport through disordered arrays of metallic dots using numerical
simulations. We find power law scaling in the current-voltage curves for arrays containing no voids,
while for void-filled arrays charge bottlenecks form and a single scaling is absent, in agreement with
recent experiments. In the void-free case we also show that the scaling exponent depends on the
effective dimensionality of the system. For increasing applied drives we find a transition from 2D
disordered filamentary flow near threshold to a 1D smectic flow which can be identified experimentally
using characteristics in the transport curves and conduction noise.

DOI: 10.1103/PhysRevLett.90.046802

A wide variety of disordered systems exhibit threshold
behavior and nonlinear response to an applied drive.
Examples include flux lines in disordered superconduc-
tors [1-3], charge-density waves (CDW’s) pinned by
impurities [4], Wigner crystals [5,6] in semiconductors
with charge impurities, and colloids flowing over rough
surfaces [7]. Another example is charge transport through
metallic dot arrays. Middleton and Wingreen (MW ) have
considered a model of this system in which the randomly
charged dots are separated by tunnel barriers [8]. They
found threshold behaviors and scaling of the current-
voltage curves of the form I = (V/V; — 1)¢. In 1D they
obtain ¢ = 1.0, while for 2D they predict analytically
{ =5/3 and find in simulations { = 2. For the 2D sys-
tems the simulated flow patterns are not straight but form
intricate meandering paths with considerable transverse
fluctuations. These same types of meandering paths are
also observed in the flow of flux lines [1,3], Wigner
crystals [6], and colloids [7] above the depinning thresh-
old. Experimental studies in metal dot arrays have also
found scaling in the I-V curves for 2D and 1D systems
[9-13]; however, the scaling exponents in these experi-
ments exhibit a wide range of values. The studies for 1D
arrays [9] find a scaling exponent of { = 1.36, which is
less than the value for 2D arrays predicted by MW, but
still larger than the expected 1D value of = 1.0. It is not
known if this system is truly 1D, or whether some me-
andering of the charge in 2D can still occur due to the
finite width of the dots. It is also not known how the
exponents would change (or whether there would even be
scaling) upon changing the system from 2D to 1D by
gradually narrowing the array width. Other systems in
2D exhibiting scaling near depinning also show a wide
spectrum of scaling exponents [1-3,6,7], suggesting that
the type of disorder and the effective dimensionality of
the array play a crucial role in the transport.

Recently, to address the role of different types of dis-
order on transport, Parthasarathy et al [14] have per-
formed experiments on triangular monolayers of gold
nanocrystals. Disorder is present in the form of charge
disorder in the substrate as well as variations in the
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interparticle couplings. Structural disorder was also in-
troduced by creating voids in the arrays. The void-free
arrays exhibit robust power law scaling with { = 2.25. A
single power law could not be fit for the structurally dis-
ordered arrays. Parthasarathy et al conjecture that in
arrays with voids, the charge must be shuttled into bottle-
neck regions which reduces the amount of charge flow.
In the theoretical studies of MW where structural dis-
order was not considered, only power law behavior was
observed [8].

Since the charge flow at depinning in the dot arrays
resembles that seen in other systems such as flux lattices,
it is of interest to ask whether some of the ideas developed
in these other systems can be carried over to the metallic
dot system. In disordered vortex systems, theory [15-17],
simulation [15,18], and experiment [19] show that at low
drives the vortex flow is highly disordered, meanders in
2D, and the overall lattice structure is destroyed. For high
drives there can be a remarkable reordering transition
where the flow occurs in 1D channels and the lattice
regains considerable order. For strong quenched disorder
in 2D, the highly driven phase forms a moving smectic
with order in the transverse but not the longitudinal
direction. Here the vortices move in well spaced channels,
and the channels are decoupled from one another.

In order to compare to the recent experiments and to
explore the points raised above, we conduct molecular
dynamics simulations of a simple model for charge trans-
port in 2D arrays with charge disorder and both with
and without structural order. In our model we consider
square and rectangular arrays of side N X M, with peri-
odic boundary conditions in the x and, for the 2D sys-
tems, y directions, containing N,. mobile charges. A
charge i follows the overdamped equation of motion,
fi=nv,=— Zf’” VU(r;) + £, + f,. The mobile charges
interact via a long-range Coulomb term, U = ¢/r,
which we treat with a summation technique [20] for
numerical efficiency. Under an applied drive f; = f X, a
mobile charge on a site, represented by a parabolic trap,
experiences a maximum threshold force f, = fy, before
exiting the plaquette. For actual dot arrays the applied
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drive comes from an applied voltage V, and the energy to
add an electron to a dot with charge ¢ is Vy, = q/C
where C is the capacitance of the dot. Charge flow will
then occur for applied drives V > V,, for a single dot. For
arrays without voids, we add disorder by selecting ran-
dom thresholds Vy, from a Gaussian distribution centered
at VS‘. To study the effect of structural disorder, a portion
P < 0.5 of randomly selected sites is effectively voided by
setting Vy, to a very large value so that mobile charge
cannot flow through them. We do not consider thermal
effects since our system is in the Coulomb-blockade
regime, so that charging energies are higher than the
thermal energies. For increasing applied drive or voltage
we measure the global charge flow or current I =V, =
(1/N.)> v;-%. We also measure the trajectories of the
flow and the fluctuations in the current, which is propor-
tional to the conduction noise.

We first consider the scaling for ordered arrays in 2D,
1D, and finite width samples. In Fig. 1(a) we show the
scaling of the average flow vs applied drive (I-V) curves
for the 2D case for nine disorder realizations and, in
Fig. 1(c), the 1D case. For 2D we find scaling with { =
1.94 = 0.15 in fair agreement with the simulation results
{ = 2.0 of MW, but still lower than the { = 2.25 found in
Ref. [14] for ordered arrays. The simulations for 1D give a
linear behavior for much of the curve, suggesting that if a
scaling exponent could be ascribed it would be ¢ < 1.0;
however, for drives near threshold, a single scaling can-
not be applied and the curve bends up. We note that for the
depinning of 1D elastic objects such as CDW’s one ex-
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FIG. 1. The scaling of the average velocity V vs applied

drive f for (a) a 2D system with a fit of { = 1.94 (solid line)
with nine disorder realizations and (b) a system of dimension
5 X500 with a = 1.45 fit (solid line), for eight disorder
realizations. fy, is the threshold force at which depinning
occurs. (c) A system geometry of 1 X 500, showing a fit with
¢ =1.0 (solid line) for nine disorder realizations. (d) 2D
systems for sizes 16 X 16 (triangle left), 30 X 30 (triangle
up), 38 X 38 (diamond), 50 X 50 (square), and 60 X 60 (circle).
The solid line is a { = 1.94 fit.
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pects an exponent of { = 1/2 [4]. Experiments measur-
ing the threshold of a single dot also find £ = 1/2 [10].
Figure 1(c) shows that the deviation from linearity occurs
only very near threshold, so that the discrepancy between
our results and MW may result from MW not being close
enough to the threshold to see the deviation. In Fig. 1(b)
the scaling for a wider system of 5 X 500 with eight
disorder realizations is shown, where we find scaling
with { = 1.45 £ 0.08. We note that experiments for the
1D arrays [10] find { = 1.36. Our results suggest that
scaling can occur for systems between one and two di-
mensions with the value of the exponent monotonically
increasing from 1/2 in 1D to 2.0 in 2D. We have also
simulated system sizes of 2 X 500 and find linear scaling
similar to the 1D case. Additional evidence for the in-
crease of the exponent as a function of dimensionality
has been obtained in cobalt nanocrystal samples of
finite thickness, with an effective dimensionality between
two and three. Here exponents of 2.2 < / < 2.7 are ob-
served [12]. Our results also suggest that the experiment
in [14] is in an effective dimension higher than 2.0. All
of the curves in Fig. 1 show a crossover to a linear regime
at high drives, which was also seen in the earlier nu-
merical work. We find no hysteresis for either the 2D
or 1D case.

In Fig. 1(d) we consider the 2D case for different
system sizes ranging from 16 X 16 up to 60 X 60. The
exponent does not change for the larger systems, indicat-
ing that our systems are large enough to capture the
correct exponent for the model considered here. Only
the smallest system (16 X 16) shows significant deviation.
We have also simulated different system sizes for the 1D
and quasi-1D case and find similar results. We note that
much larger systems would be needed to approach the
typical experimental sizes. The rate at which the applied
drive is increased can also affect the measured exponents.
At rapid sweep rates, transient states rather than steady
states appear, and both the measured current and the
apparent exponents are larger than the steady state values.
All our results are from a steady state.

We next consider the flow transitions for increasing ap-
plied drive in the 2D system. In Fig. 2 we show the current
paths for three different applied drives above threshold.
In Fig. 2(a), at f;/fyn = 1.1 the flow follows meandering
paths in only a few regions of the sample, in agreement
with the simulations of MW [8]. These flow paths are sta-
tionary over time. For higher drives, as seen in Fig. 2(b)
at f;/fm = 2.0, there is a crossover from the static paths
to dynamic paths which open, close, and shift position
over time. The filamentary flow in this case occurs every-
where in the system over time. For drives at and above the
f4 value where the I-V curve becomes linear, as seen in
Fig. 2(c) for f;/fw = 10.0, there is a crossover from
the meandering 2D flow to straight 1D ordered channels
of flow. Figure 2(c) shows that the charge moves only in
1D channels without any jumping of charge between adja-
cent channels. The channels themselves carry different
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FIG. 2. The current paths for increasing applied drives in
the 2D system shown in Fig. 1(a). Here (a) f;/fw = 1.1 and
(b) fu4/fww =2.0 produce meandering 2D channels. In
(¢) f4/fw = 10.0 produces straight 1D channels.

amounts of flowing charge due to the different average
disorder along the rows. The charges in one channel do
not synchronize with the flow of charge in adjacent chan-
nels; instead, the channels slide past one another. We term
this a smectic flow state since the channels are periodi-
cally spaced in the transverse direction but are indepen-
dently moving in the Ilongitudinal direction. The
transition from the disordered to partially ordered flow
is very similar to the reordering transitions seen for
driven vortex lattices [15—19]. We observe the same tran-
sitions in the systems of finite widths.

In Fig. 3(a) we plot the dV/df curve, which is pro-
portional to the resistance R, for the 2D system in
Fig. 1(a). The crossover to the linear regime (with con-
stant R) appears as the plateau region in dV/df. Also
shown in Fig. 3(a) is the power S, from one octave of
the power spectra of the conduction noise at four dif-
ferent applied drives fy: So = [ 2 dvS(v), where S(v) =
| [V (t)e ?™'dt|*>. The noise power shows a peak in
the scaling regime near f; = 0.35 and then decreases in
the linear regime with a low value of S, during the
smectic flow. In Fig. 3(b) we show that a clearer signa-
ture of the flow phases can be obtained by examining
individual power spectra. For drives in the scaling regime
we find a 1/ power spectra, which is indicative of the
many different frequencies generated by the complex
flow patterns illustrated in Figs. 2(a) and 2(b). The large
noise power and 1/f% signals have also been associ-
ated with meandering disordered flow in superconducting
vortices. For increasing drive a characteristic peak in
the spectra begins to appear and is most prominent in
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FIG. 3. (a) Circles: dV/df of the curve shown in Fig. 1(a) for
a 2D system. Squares: The noise power S, as a function of
drive. (b) Consecutive power spectra for increasing f; for, from
bottom to top, f4/fm = 1.1, 2.0, 5.0, and 8.0. The curves have
been shifted up for presentation.

the smectic flow regime. This peak occurs when the
charge in the smectic phase flows in 1D paths along the
dots which are in a periodic array of spacing a. The fre-
quency at which the peak occurs is then v = v/a, where v
is the average velocity of the charge. For perfectly ordered
flow, the peaks would be very narrow. Since the channels
have different amounts of flowing charge, there is some
dispersion in the frequency. The presence of peaks
in the power spectra suggests that it would be possible
to observe an interference effect, or Shapiro steps, in
the I-V curves if an additional applied ac drive is im-
posed with a frequency that matches the frequency of the
system.

Another experimental probe of the moving smectic
phase is the presence of a transverse depinning barrier
as first predicted in [17] for elastic media. If a transverse
force is applied to the already longitudinally moving
system, then in the disordered regime there is no thresh-
old for transverse motion, and some charge will imme-
diately begin to move in the transverse direction. For the
high drive regime, after the 1D moving channels have
formed, there is a finite transverse threshold since the
channels are effectively pinned in the transverse direc-
tion. There may also be interesting results for driving
along different directions of the dot lattice. Although
there is randomness in the individual dot strength, the
overall topological order of the array can break the
symmetry so that certain directions may allow easier
charge flow than others.

We next consider the structurally disordered arrays. We
find that, for a fixed applied drive, the current is reduced
as the void fraction P is increased. This is understandable
since the charges must flow in increasingly winding
patterns to pass the voids, which are effective obstacles.
In Fig. 4(a) we plot V vs Pup to P = 0.49 for a fixed f; =
0.2. For the decreasing value of V, we find a best fit to a
power law with V = V(0.5 — P)!3. The current should
go to zero for P = (.5, or the percolation limit, where for
an infinite system voids would span the entire system. In
our system there is still transport for P > 0.5 due to finite
size effects. In Fig. 4(b) we show the current vs applied
drive curve for a void fraction of P = 0.47. In this case,
we cannot fit a single power law above threshold. In
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FIG. 4. (a) The average velocity at a fixed f;, = 0.2 for a
system with increasing void fraction P. The solid line is a fit
with V = 2(0.5 — P)'3. (b) The velocity vs applied drive curve
for a void fraction of P = 0.47. (c) The trajectories for a system
with a void fraction of P = 0.47 at f;/fs = 3.0.

Ref. [14] the additional features in the I-V curves for the
structurally disordered arrays were conjectured to occur
due to bottleneck effects caused by the void regions. In
Fig. 4(c) we illustrate the current paths for f;/f = 3.0
and P = 0.47, showing that there is considerable flow
through the system, but that in certain well-defined areas
no flow is occurring. Averaging the trajectories over a
longer time produces the same flow patterns shown in
Fig. 4(c). This is in contrast to the flow pattern in Fig. 2(b),
which changes over time, so that for long times flow
occurs in all regions of the sample. In Fig. 4(c) some
bottlenecks can also be seen in the form of regions where
the trajectories are compressed. For the structurally dis-
ordered arrays the transition to the smectic flow at higher
drives is absent since straight 1D flows cannot occur even
in the Ohmic regime. The conduction noise shows the
same 1/f% behavior as the ordered arrays but the peaks in
the noise spectra are absent in the Ohmic regime.
Another issue is the possible effect of the edges, which
may induce a 1D or quasi-1D correlated region of stronger
or weaker disorder. These effects could be particularly
relevant for systems of finite width. To test this, we have
performed simulations of void-free systems where a cor-
related 1D region of strong or weak disorder is added to
mimic possible edge effects. For the small 2D systems
and for systems with small aspect ratios, the I-V curves
are very similar to those seen in Fig. 4(b) where a single
power law is absent. For the larger systems this effect
washes out and the system returns to the pure 2D case.
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In summary, we have investigated charge transport in
structurally ordered and disordered arrays. For ordered
arrays we find scaling in the current vs applied drive
curves with (=194 in 2D, while for 1D arrays the
scaling exponent {<<1. Scaling still occurs for systems
with finite width, with the exponent increasing toward
{=2.0 for increasing sample widths. For increasing ap-
plied drive in 2D, we show that the crossover to Ohmic
behavior coincides with a change in the flow from 2D
meandering to straight 1D channels or smectic flow. Evi-
dence for this change in the flow also appears in the form
of a crossover in the power spectra, which shows a broad
1/f¢ signature in the disordered flow regime, and a char-
acteristic peak or washboard signal in the smectic flow
regime. For disordered arrays where a fraction of the sites
are replaced with voids, a single power law cannot be fit to
the I-V curve in agreement with recent experiments. The
transition from the 2D disordered flow to the 1D channel
flow is absent in the structurally disordered arrays.
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