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Origin of the Universal Roughness Exponent of Brittle Fracture Surfaces:
Stress-Weighted Percolation in the Damage Zone
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We suggest that the observed large-scale universal roughness of brittle fracture surfaces is due to the
fracture propagation being a damage coalescence process described by a stress-weighted percolation
phenomenon in a self-generated quadratic damage gradient. We use the quasistatic 2D fuse model as a
paradigm of a mode I fracture model. We measure for this model, which exhibits a correlated
percolation process, the correlation length exponent � � 1:35 and conjecture it to be equal to that of
classical percolation, 4=3. We then show that the roughness exponent in the 2D fuse model is � �
2�=�1� 2�� � 8=11. This is in accordance with the numerical value � � 0:75. Using the value for 3D
percolation, � � 0:88, we predict the roughness exponent in the 3D fuse model to be � � 0:64, in close
agreement with the previously published value of 0:62� 0:05. We furthermore predict � � 4=5 for 3D
brittle fractures, based on a recent calculation giving � � 2. This is in full accordance with the value
� � 0:80 found experimentally.
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Sornette and Vanneste [14]. The quasistatic fuse model the density of broken bonds and pc is the density at which
Fracture surfaces in brittle materials show surprising
scaling properties [1]. These were first seen in the mid-
1980s [2]. They manifest themselves through self-affine
long-range height correlations. That is, the conditional
probability density p�x; y�, i.e., the probability that the
crack surface passes within dy of the height y at position x
when it had height zero at x � 0, shows the invariance


�p�
x; 
�y� � p�x; y�; (1)

where � is the roughness exponent. In the early 1990s
increasing experimental evidence hinted that the rough-
ness exponent not only existed but had a universal value
of about 0.80 [3]. The experimental picture today is even
more complex: (a) A second, smaller roughness exponent,
approximately equal to 0.5, has been observed on small
length scales, with a crossover length between the two
regimes [4]; (b) the growth of the roughness from an
initial straight notch shows anisotropy [5] and a two-
regime process in the case of quasibrittle material such
as wood [6]; (c) materials such as sandstone, for which
the fracture is strongly intergranular, show only a � � 0:5
self-affine scaling [7]. Simultaneously with these experi-
ments, theoretical and numerical work have been pro-
duced at a steady rate with the aim of (i) understanding
why there is a self-affine scaling of the roughness,
(ii) why there should be universality of the roughness
exponent, and (iii) how to unify observations and model-
ing [8–12].

It is the aim of this Letter to present a new possible
explanation for the observed universal roughness of
brittle fracture surfaces at larger scales for mode I cracks.
We present our ideas using a paradigm of the fracture
model: the quasistatic fuse model [13]. Dynamical fuse
models have been proposed and studied in the work of
0031-9007=03=90(4)=045504(4)$20.00 
consists of a lattice where each bond is an Ohmic resistor
as long as the electrical current it carries is below a
threshold value. If the threshold is passed, the bond burns
out irreversibly. The threshold t of each bond is drawn
from an uncorrelated distribution p�t�. The lattice is
placed between electrical bus bars and an increasing
current is passed through it. Numerically, the Kirchhoff
equations are solved with a voltage difference between
the bus bars set to unity. The ratio between current ij and
threshold tj for each bond j is calculated and the bond
having the largest value, maxj�ij=tj�, is identified and
subsequently irreversibly removed.

In the limit of infinite disorder [i.e., when the
threshold distribution is on the verge of becoming non-
normalizable, e.g., p�t� / t���1, where 1 	 t <1 in the
limit of � ! 0] the fuse problem becomes equivalent to a
bond percolation problem [15]. At more narrow disorders,
a rich phase diagram appears which is controlled by two
parameters, the exponent � which controls the threshold
distribution tail toward infinitely large threshold values
and the exponent � which controls the tail of the thresh-
old distribution toward zero: p�t� / t�1��, where 0 	 t 	
1 [16]. For smaller values of either � or �, the fuse model
still shows behavior very similar to percolation: The
lattice stops conducting after a finite percentage of bonds
have burned out even when the lattice size is extrapolated
to infinity. Close to breakdown, critical exponents may be
defined precisely as in the percolation problem. However,
as the breakdown process in the fuse model is highly
correlated, there is no reason to expect these exponents
to be equal to those found in the percolation problem. At
even smaller disorders, localization sets in.

When the disorder is broad enough so that the fuse
model behaves in a percolationlike manner, there is a
diverging correlation length � / jp� pcj

��, where p is
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an infinite lattice breaks down. For classical percolation,
� � 4=3 [17]. For the fuse model away from the infinite-
disorder limit, � has not been measured. Three scenarios
are possible for the value of �: (i) � depends on the
disorder. Hence, it is not a universal quantity. (ii) � is
independent of the disorder but is different from 4=3.
In this case, the fuse model defines a new universality
class different from standard percolation. (iii) � is
the same in the fuse model as in standard percolation.
Thus, the fuse model is in the universality class of
percolation.

In order to determine which of these three scenarios is
correct for the two-dimensional fuse model, we studied
the survival probability of lattices for different system
sizes and different disorders. In Fig. 1, we show survival
probability for the threshold distribution p�t� / t�1��

when 0 	 t 	 1, where � � 1=10 as a function of density
of broken bonds for different lattice sizes. The collapse of
the curves obtained for different sizes shows both that the
survival probability is converging on a step function at a
finite p � pc and that an estimate of the coefficient
1=� � 0:75. Indeed, we expect the survival probability
to scale as L�1=�. In Fig. 2, we confirm the estimate of �
by showing the 50% survival probability, as a function of
lattice size for this threshold distribution and for the
threshold distribution p�t� / t�1�� on the unit interval,
where � � 1=3. Finite size scaling dictates that the ef-
fective density at which 50% of the lattices survive, ps,
behaves as

ps � pc �
c

L1=�
; (2)

where c is a constant. By adjusting the value of � until a
straight line ensues, we determine the value of �. We find
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FIG. 1. Survival probability as a function of density of bro-
ken bonds plotted against �p� pc�L

1=�, where pc � 0:3735
and � � 4=3 gives a good data collapse for different lattice
sizes. The threshold distribution was p�t� / t�1�� on the unit
interval where � � 1=10. The number of samples for each
lattice size varied from 2000 for L � 10 to 80 for L � 60.
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� � 4=3 fits the data very well. These results are consis-
tent with scenario (3) above: The two-dimensional fuse
model is in the same universality class as classical two-
dimensional percolation.

If one tries to determine the scaling properties of the
final crack for disorders that are so broad that the system
behaves as regular percolation, the roughness exponent
will be one, since the final crack will be fractal with no
anisotropy and so the width of the crack will essentially
be that of the lattice itself. However, with more narrow
threshold distributions, a nonlinear gradient develops in
the damage profile in the average current direction. That
is, if y is the average current direction (which is along the
voltage gradient or imposed displacement), then damage
density averaged in the orthogonal x direction (parallel to
the bus bars and along the average final rupture), hpi�y�,
takes the form

hpi�y� � pf � A
�
y� yc
ly

�
2
; (3)

where A is a positive constant that depends on the width of
the threshold distribution and ly is the width of the
damage distribution. The damage profile must surely be
quadratic as the system must be statistically mirror sym-
metric about yc, where the maximum damage occurs. At
breakdown, the maximum damage pf is equal to the
critical damage density pc and can be expressed in terms
of the correlation length �: �hpi � pc� / ��1=�. As pro-
posed by Sapoval et al. for percolation in a gradient [18],
we suggest to consider the region along the damage zone
that is at a distance corresponding to the correlation
length: �y� yc� / �. A point at a distance y � yc has a
finite probability to be within the critical region and so
to belong to the final crack. Accordingly, the crack
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FIG. 2. 50% survival probability plotted against inverse lat-
tice size to the power 0.75 for threshold distributions on the unit
interval, p�t� / t�1��, where � � 1=10 (�) and � � 1=3 (+).
The straight lines extrapolate to pc � 0:3735 and pc � 0:252,
respectively.
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roughness is proportional to the correlation length: � �
w and solving Eq. (3) with the above conditions yield

w� l2�=�1�2��
y : (4)

The width of the damage profile, ly, must be propor-
tional to the width of the system in the direction perpen-
dicular to the final crack, L. The reason for this is that
each broken bond creates a disturbance in the average
current field that enhances the probability for a new
bond to break in a finite-width cone which stretches out
from each side of the bond in the direction approximately
orthogonal to the average current direction. Hence, as
long as the current enhancement is not sufficient to induce
crack coalescence and create an unstable crack tip, the
damage zone will spread in the new cones in a random
fashion. This leads to

ly / L: (5)

In Fig. 3, we show the damage profile averaged over
many samples and for many lattice sizes plotted against
y=L. We note from Fig. 3 that the profiles clearly follow
Eq. (3). The collapse of the damage profiles shows that
they are functions of the combination y=L and L does not
enter in any other way. This result is confirmed in Fig. 4
where the width of the damage zone ly is plotted versus
the system size L for two different threshold distribu-
tions. Both show a good linear behavior in accordance
with Eq. (5). Hence, the width of the crack scales as

w� L2�=�1�2��: (6)

We therefore conclude that the fracture roughness expo-
nent is
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FIG. 3. Damage profile hpi�y� normalized so that its maxi-
mum is set to unity plotted against y=L for different lattice
sizes L and for the threshold distribution p�t� / t�1�� on the
unit interval and where � � 1. The curve is a quadratic best fit
based on the L � 32 data in accordance with Eq. (3).
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� �
2�

1� 2�
; (7)

which lead for the 2D fuse model to � � 8
11 � 0:73 where

we have assumed that � � 4=3, the standard percolation
value. In [8,12], � was measured to be about 0.75 in the
two-dimensional fuse model. Hence, there is very good
agreement with Eq. (7).

Equation (7) is also valid for the 3D fuse model. The
roughness of crack surfaces for the 3D fuse model has
been characterized numerically by Batrouni and Hansen
[10], finding � � 0:62� 0:05. On the other hand,
Räisänen et al. [11] argue, using numerical calculations
as support, that the roughness exponent is that of the
minimal surface problem, � � 0:41� 0:02 [19]. If we
assume that the 3D fuse model belongs to the same
universality class as classical percolation, we expect � �
0:88. Using Eq. (7), we obtain � � 0:64, which is in very
good agreement with the numerical result of Batrouni and
Hansen [10].

We now extend our argument to the general case of real
3D brittle fractures in heterogeneous materials. No mea-
surements of � exist for the brittle fracture problem,
neither numerically nor experimentally. However, a re-
cent theory proposed by Toussaint and Pride [20] gives
� � 2, making � very different from the value found in
standard 3D percolation, � � 0:88—which is expected
for elastic percolation. Using Eq. (7), we arrive at

� �
4

5
; (8)

which is indeed in excellent agreement with the experi-
mentally observed roughness exponent for large scales,
� � 0:80. Hence, a direct measurement of � in this sys-
tem is desirable.
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FIG. 4. Width of the damage distributions shown in Fig. 3 (+)
and one based on the threshold distribution p�t� / t�1�� on the
unit interval, with � � 1=3 (�) plotted against L. The straight
lines are linear fits to the data.
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There have also been experimental [21] and numerical
[22] studies of two-dimensional brittle fracture. Rough-
ness exponents between 0.63 and 0.72 and 0:68� 0:04
were found in the two experimental studies, and the
numerical study gave � � 0:71� 0:10. Moukarzel and
Duxbury [23] have measured � � 1:16� 0:03 for two-
dimensional elastic percolation. Given that elastic perco-
lation plays the same role in brittle fracture —which is an
elastic problem—as ordinary percolation plays in the
fuse model, we find using Eq. (7), that � � 0:70. This is
consistent with both the experimental and numerical
values for � .

Why should this theory be applicable only to the large-
scale exponent observed in brittle fracture, and not the
exponent seen at small scales? It is the large-scale expo-
nent that describes the correlated behavior of the damage
field which finally will lead to the large-scale properties
of fracture surface. The smaller exponent, which is close
to 0.5, describes the opening of small cracks and may be
caused by corrugation waves propagating elastically
along the crack front [24]. At larger scales, where a
roughness exponent equal to 0.8 is observed, these waves
are too weak to influence the system. At this larger scale,
we propose that it is a correlated gradient percolation
process which is responsible for the value of the rough-
ness exponent.
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Alava, Phys. Rev. E 61, 6312 (2000); B. Skjetne, T. Helle,
and A. Hansen, Phys. Rev. Lett. 87, 125503 (2001);
F. Barra, H. G. Hentchel, A. Levermann, and
I. Procaccia, Phys. Rev. E 65, 045101 (2002).

[10] G. G. Batrouni and A. Hansen, Phys. Rev. Lett. 80, 325
(1998).
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