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Optical Manipulation of Defects in a Lyotropic Lamellar Phase
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Here we study the line defect in a hyperswollen lamellar phase of lyotropic liquid crystal by applying
a laser trapping method. We have succeeded in directly measuring the tension of a single isolated line
defect and the adhesion energy between two defects. We demonstrate a new possibility of intentional
patterning of various defects by direct optical manipulation. Furthermore, local rheological measure-
ments provide information on the membrane organization around a particle and also evidence
suggesting that flow in a lamellar phase has a two-dimensional nature.
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Topological defect is a generic feature of the ordered
state with broken continuous symmetry and is spontane-
ously formed upon ordering [1]. Clarifying the physical
properties of defects is crucial for the basic understanding
of the mechanical properties of an ordered phase. Since
the elastic modulus of material, G, is related to the
characteristic length scale of structural order, /, as G «
[~P (D: dimensionality of the order), an ordered structure
in soft matter composed of a mesoscopic unit has consid-
erably lower elasticity than metals and semiconductors
[2]. This feature of soft matter provides us with an ideal
situation to study the structural, mechanical, and dy-
namic properties of a single defect. The low elasticity
and the large characteristic size allow us, respectively, to
manipulate a defect structure itself by using a weak
external force ( ~ pN) and to directly observe its dynamic
response in real time with optical microscopy. It is known
that defects sometimes weaken the mechanical strength
of material, but this fact can positively be used to control
the mechanical properties by introducing defects inten-
tionally [3]. In this Letter, we study the physical proper-
ties of a single line defect [4] in a hyperswollen lamellar
structure and spatially organize it by direct optical
manipulation.

The samples we used are an aqueous solution of C,E;
(penta-ethyleneglycol mono n-dodecyl ether) and of
CoE; (triethylenglycol mono n-decyl ether). Both C,E;
and C,(E; are nonionic surfactants. They are known to
form various internal structures such as lamellar (L) and
sponge (L) organization [2] made of surfactant bilayer
membranes, depending upon the concentration ¢ and the
temperature 7T [5,6]. Their characteristic length scales can
be changed from nano- to micrometer just by changing ¢,
which is the concentration of surfactant in the solution. ¢
is ranged from 3 to 20 wt% in our experiments. The
sample was confined between two parallel glass plates
separated by about 50 um. We first heated a sample to
transform it into the homogeneous sponge phase and then
slowly cooled it down. The lamellar phase is nucleated
and grows on the glass surface and eventually forms a
uniform homeotropically aligned lamellar phase [7,8].
The perfect alignment of such a thick sample is possible
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due to large intermembrane spacing d. Note that the
strength of spatial confinement is characterized by d/L,
where L is the length scale of the confinement. We put
hydrophilic glass beads, whose radius a is 1.0 wm, into
the surfactant solution to create and manipulate line
defects with optical tweezers. This provides us with
an interesting situation of 2a/d = 10-100, depending
upon ¢. For a usual thermotropic smectic phase, this
probe size should correspond to on the order of nm.
This is a great advantage of using ordered soft matter
with a larger characteristic length scale.

We apply a laser trapping method [9,10] for measuring
the mechanical properties of a single line defect. We
controlled the position of a laser spot (wavelength:
832 nm) focused by objective lens ( X 100, NA = 1.25)
on a focal plane with the spatial resolution of 0.1 um,
using two computer-controlled galvano mirrors. The
motion of beads and defects were monitored by video-
enhanced microscopy.

First we describe the characteristic features of a single
line defect formed in the lamellar phase. When we dis-
perse glass beads in a hyperswollen lamellar phase, most
of them are localized either on line defects [3,11] or
around other types of defects such as a multilamellar
vesicle to lower the elastic energy [12], while some are
dispersed as isolated beads. If we capture one of the glass
beads trapped on such defects and pull it from the original
position by the laser tweezers, a line defect is newly
formed as a trace of the bead, as shown in Fig. 1(a).
Note that the bead moves exactly on a two-dimensional
plane in the lamellar structure. This is because we can
never break up membranes by the force exerted on a bead
by optical trapping ( < 30 pN), and thus we are unable to
move the bead vertically across membranes. Thus, the
manipulation in a lamellar phase should be called “2D
optical manipulation.”

The cross-sectional view of the line defect formed in
this way and the defect structure around a bead at its end
are schematically shown in Figs. 1(b) and 1(c), respec-
tively [13]. Note that the number of membranes forming a
defect should be even [for example, it is six for Fig. 1(b)]
and exactly equal between both sides of the line defect.
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FIG. 1. A line defect and its structure. (a) A curved line
defect formed by a glass bead (¢ = 1 um) at 60.0 °C for ¢ =
3.0wt% C;Es. The scale bar corresponds to 10 pum.
(b) Schematic defect structure, which corresponds to the A-B
cross section in (a). The distance between the two singular lines
which are the center of curvature radii r; [see (c)] of cylin-
drically packed membranes is 2s. We call it the line defect
width or diameter. As directly observed in (a), 2s =~ 1 um for
¢ = 3.0 wt%. (¢) Membrane structure around a glass bead
located at the end of a line defect. (d) Membrane structure
around an isolated glass bead (not on a line defect).

This constraint stems from the connectivity requirement
for membranes, which must be very strictly satisfied. The
bead at the end of a line defect is surrounded by a half
line defect of width s, or located in a passagelike point
defect [3,14]. This is revealed from the following fact. If
we release the bead after moving it, it returns to the
original position, following the shrinking line defect on
its path. This shrinking process can be regarded as the
repairing process of a line defect, where the transforma-
tion from folded to planar membranes keeps occurring
around the bead. Note that there is no change in the
topology. Defects are neither created nor annihilated
during this process.

We can create a curved line defect by moving a bead
quickly on a curved path [15], as shown in Fig. 1(a). Then,
if we keep the bead at a fixed point, the defect gradually
becomes straight (as indicated by a dashed line) to mini-
mize the length of the line defect. Since this relaxation
speed of the curvature is much slower ( ~ 10 s) than the
speed of defect repairing, which is determined from
the velocity of the bead (for example, v ~ 10 wm/s for
¢ = 0.03), the released bead returns on the curved path
created. Thus, the bead can record its path, or the history
of its motion. If we draw a spiral pattern, for example,
and release the bead by switching off the laser power, the
bead just follows the spiral path. This interesting behavior
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strongly supports the above interpretation that the defect
shrinking is the repairing process of the line defect itself.

By applying laser tweezers, we have succeeded in
directly measuring the line tension of a single line defect,
Fr, by balancing it with a trapping force of a bead at the
end of the line defect. We measure the minimum trapping
force, below which the bead is released and the defect
starts to shrink, which should be equal to the line tension
Fr. The ¢ dependence of F for C;,E5 solutions is shown
in Fig. 2.

We also theoretically estimate the line tension by as-
suming the defect structure shown in Fig. 1(b). Here the
energy associated with the singular part in Fig. 1(b) is
neglected since such singularity would be avoided in a
real system [13]. Then, the line tension, which is the total
excess curvature energy per unit length of a line defect,
can straightforwardly be calculated as

m

Fr=Y"% i 2K 12 (1)
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where r; =[1/2+ (i —1)]d (i = 1,2,3,...) and k is the
membrane’s curvature elastic modulus. Here m is the
number of folded membranes [e.g., m = 3 in Fig. 1(b)],
and thus it should be an integer close to s/d ~ a/d for our
case. The first term of the right-hand side of Eq. (1)
represents the energy associated with the folded part,
the second term the energy associated with the unfolded
part. Since d = /¢, where & is the thickness of a bilayer
membrane, and 6 = 3.75 nm for our system [5], m should
be about 8, for example, fora = 1 umand ¢ = 0.03. The
width of a defect, 2s, should be comparable to a. The line
tension measured agrees well with this theoretical pre-
diction [Eq. (1)] with k = 0.95kpT [16] (see Fig. 2) [17].
Note that there is no adjustable parameter.

Next we focus on the local rheological properties of a
hyperswollen lamellar phase around a bead. The effective
viscosity 74.¢ for the motion of a bead at the end of a
defect can be estimated from its velocity, v, since the
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FIG. 2. The measured line defect tension (filled circles) for
C,E;5 solutions and the theoretical prediction (solid curve).
Each data point is the average of data for about 10 different line
defects. The inset plots mge/Miso against ¢. The gray line
represents 7ger/ Niso = 1.6.
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viscous drag force F,, should be balanced with the tension
Fras Fr = F,, = 6mngrav. We also make an indepen-
dent measurement of the effective viscosity 7, for the
motion of a single isolated particle (not in a line defect):
We measure the corresponding Stokes force (F, =
67 n;,av) from the minimum trapping force required
for manipulating the particle with a constant speed v.
We confirm the proportionality of F,, and v for both cases,
indicating that the fluid behaves as a Newtonian fluid.
However, we find that the 714 is larger than n;, by a
factor of 1.6 = (a + s)/a for all the surfactant concen-
trations (see the inset of Fig. 2). This suggests the differ-
ence in the defect structure between the two cases: A bead
at the end of a line defect accompanies the passagelike
defect structure (characteristic size s) around it [see
Fig. 1(c)] upon its motion, while an isolated one may
not accompany such a large defect structure. We speculate
that the defect structure for the latter is the one composed
of m membranes that are independently folded one by
one [see Fig. 1(d)]. This defect structure has a higher
energy than the large passagelike one where m mem-
branes are folded together [see Fig. 1(c)], but it is favor-
able if we consider the process of defect formation
upon the transformation of the sponge structure to the
lamellar one around a particle and isolated particles are
rather rare. Note that in the sponge phase an isolated bead
is expected to be surrounded by folded parts of mem-
branes that form a sponge structure. This example indi-
cates that our method has the potential to provide
interesting information on the local membrane organiza-
tion around a bead, which is hardly obtained by other
methods.

Here it is worth mentioning that our viscosity mea-
surements described above, in particular, the proportion-
ality between F, and v, directly support the view that the
medium is a fluid made of membranes and intermembrane
liquid. For example, the surfactant molecules in a mem-
brane should flow along it; otherwise, defects must be
created on each membrane upon the motion of a bead,
which would lead to breakdown of the proportionality
between F,, and v. Furthermore, the 2D nature of flow in
a lamellar phase is confirmed by the following fact. If we
assume that a line defect whose width is 2s moves in a 3D
fluid of viscosity 7, then the friction force for the trans-
lational motion of a line defect per unit length is esti-
mated in the Oseen approximation as Fjj,, = % by
regarding the line defect as a cylinder with a radius of s.
Here A = lnsp4v717me — v, where v = 0.5772 is the Euler
number and vy, i the translational velocity of a line
defect. We experimentally confirmed that v;,, measured
is slower than that estimated by the above relation for a
3D fluid by about 1 order of magnitude. Note that they
should be the same if the assumption made (the 3D nature
of fluid) is correct. This discrepancy supports the quasi-
2D nature of fluid in a lamellar phase (or low permeabil-
ity of fluid across membranes).
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Finally, we demonstrate the 2D patterning of line
defects in a lamellar phase by using 2D optical manipu-
lation of a bead. Two typical examples are shown in Figs. 3
and 4. One is the network of line defects (see Fig. 3). It
behaves as a network of elastic strings, which can be used
to control the elasticity of the system [3,11]. The other is a
spiral pattern of a line defect [see Fig. 4(a)]. It should be
noted that these 2D patterns need to satisfy the elastic
force balance condition so that they are stable. For the
former, the elastic force balance on the network of a line
defect can be seen from the fact that three arms always
make an angle of 120° at their junction point (see Fig. 3).
For the latter, on the other hand, the spiral pattern is
stabilized by the adhesion force between the neighboring
line defects.

Let us consider the adhesion between line defects,
which is a key physical factor for the formation of a spiral
pattern having a constant spacing between neighboring
line defects. Neighboring line defects should be made of
the same number of membranes and exist exactly on the
same height in a lamellar phase. Our observation tells us
that they interact with each other when their distance
becomes less than 1 wm, which is our spatial resolution
of microscopic observation. We experimentally estimate
the adhesion energy from the condition for the spiral
pattern to be stable, as follows. The line tension of the
adhered line defect, F%, should be balanced with the line

FIG. 3. Network of line defects formed by 2D optical ma-
nipulation at 35.0 °C for the lamellar phase of a C;yE; solution
(¢ = 10.1 wt %). The scale bar corresponds to 10 wm. Dashed
lines, which are to guide the eye, represent line defects.
According to the model in Fig. 1, the region surrounded by a
line defect should have a closed pancakelike membrane struc-
ture. It is similar to a uniaxially compressed multilamellar
vesicle, whose thickness is equal to that of a line defect. If the
line tension is balanced everywhere in the network structure, it
is stable. If we violate this force balance, the network structure
slowly shrinks and eventually disappears. The mechanism of
shrinking of the pancakelike region may be an evaporation-
condensation-like mechanism. Since exchange of surfactant
molecules between membranes is very slow, such a closed
region maintains its size for more than 10 min, supporting
the above mechanism.
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FIG. 4. (a) Optically manipulated 2D spiral pattern. It was
observed at 60.0°C for ¢ = 9.2 wt% C,Es. The scale bar
corresponds to 10 wm. Solid and dashed lines are to guide the
eye. (b) The adhesion energy per unit length of line defect, E,
is plotted against 1/d, which is proportional to ¢. Each data
point is an average of the results of five measurements. E, is
about 10% of the line tension.

tension of an isolated line defect, Fy, to have the angle
of 6 between them at a sharp kink [19] [see Fig. 4(a)].
Thus, we obtain the relation of F$ = Fycosf. From this,
we can estimate the adhesion energy per unit length as
E,=F; — F{. In Fig. 4(b), the adhesion energy E,
estimated in this way is plotted as a function of 1/d,
which is proportional to ¢, for C,Es solutions. The result
is consistent with a simple scaling prediction, E, ~
kgT/d, which is based on the fact that d is the only
relevant length scale [18].

To summarize, we have revealed the physical proper-
ties of a single defect and the local rheological properties
of a lamellar phase and successfully drawn 2D patterns
by its optical manipulation. Our method may be applied
to other types of topological defects of ordered soft
matter.
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