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Observation of Locked Intrinsic Localized Vibrational Modes
in a Micromechanical Oscillator Array
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The nonlinear vibrational properties of a periodic micromechanical oscillator array have been
measured. For sufficiently large amplitude of the driver, the optic mode of the di-element cantilever
array becomes unstable and breaks up into excitations ranging over only a few cells. A driver-induced
locking effect is observed to eternalize some of these intrinsic localized modes so that their amplitudes
become fixed and the modes become spatially pinned.
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Intrinsic localized modes (ILMs) which extend over
only a few lattice sites of a periodic nonlinear lattice have
been examined theoretically in a variety of systems [1-4].
Although the smallest excitations would be in a quantum
lattice [5], there are still interesting issues in classical
models to be explored experimentally such as mobility
[6], discrete lattice potential [7], and interaction among
ILMs [8], as well as the long-time behavior of a
driver-induced modulational instability for a dissipative
system. Thus the exploration of amplitude-dependent fea-
tures is one of the important experimental issues at the
present time.

Although some experimental studies have been re-
ported for large scale mechanical systems [9], for some-
what smaller Josephson-junction arrays [10,11] and
optical waveguides [12,13], and for nanoscale lattices
[14—16] none of these systems are, as yet, appropriate
for studying the detailed motion of large numbers of
ILMs in the presence of a driver. Recently, micro-
electro-mechanical system (MEMS) silicon technology
has matured sufficiently [17] so that we can make a few
hundred coupled cantilever oscillators [18]. In this Letter
we describe our experimental investigation of ILM crea-
tion and locking for a cantilever array in the presence of
damping, disorder, and a driver.

Our cantilever array is produced from a photoresist
mask over a silicon nitride layer on a silicon substrate.
This is exposed and then etched via a CF, plasma in a
reactive ion chamber. The silicon substrate is undercut
using an anisotropic KOH etch, thus releasing the silicon
nitride cantilevers. A 3D rendition of one unit cell of the
resulting array is shown in Fig. 1(a). Such cantilevers have
a hard nonlinearity. To achieve the large amplitude uni-
form mode instability required to produce ILMs one
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needs to drive the highest frequency uniform mode of
the system [19]. In order to accomplish this when using
a piezoelectric transducer (PZT) driver, two different
length cantilevers per unit cell have been constructed as
shown in Fig. 1(a). With this di-element array the dis-
persion curve is folded over so that the highest frequency
vibrational mode is now at the zone center. The room
temperature quality factor of this mode is about 8000.

Figure 1(b) shows the experimental setup for measur-
ing ILM dynamics and mobility versus time. A cylindri-
cal lens is used to focus a He-Ne laser line image on the
static array. The reflected beam is then incident on a 1-D
CCD camera. The PZT is driven with a voltage controlled
oscillator permitting frequency chirping [20] or cw op-
eration. The switch, the ramp generator, and the computer
are synchronized with the camera by using a pulse gen-
erator. The speed of the camera, about 18 kHz, is insuffi-
cient to monitor the sinusoidal motion of the cantilevers.
However, as the vibration of a cantilever grows, the re-
flected laser beam increasingly misses the 1-D CCD
camera and the image of that particular cantilever be-
comes darker. The speed of the camera is fast enough to
observe the lateral motion of an ILM. This relatively
straightforward observational method permits systematic
monitoring of the excitation pattern of large amplitude
ILMs and their interaction with a driver.

Figure 2 shows the room temperature cantilever exci-
tation pattern versus time for a 248-element array. The
CCD camera can image only a portion of the sample,
about 220 cantilevers. The cantilever positions can be
identified by the white lines to the left of time = 0. The
pulse interval is highlighted. The high-power, PZT driver
(~ 20 V) is chirped from 0.9986f (f, = 147.0 kHz, the
maximum resonant frequency of the upper band) to

© 2003 The American Physical Society 044102-1



VOLUME 90, NUMBER 4 PHYSICAL

REVIEW LETTERS

week ending
31 JANUARY 2003

(a)

overhang

-
o
+

cantilevers

(b)

vacuum A T

laser PZT

” |
—
/

cylindrical

ramp

T

pulse

\
T _Tsync_
% 1D trig. |
CCD o
_ > computer
image

FIG. 1. (a) Schematic figure of a di-element type cantilever
array. Cantilevers are made from a 300 nm thick SizN, film.
The lengths of longer and shorter cantilevers are 55 and
50 um, respectively. Width and pitch of cantilevers are 15
and 40 pum, respectively. (b) Experimental setup for the ILM
measurement. A beam from a He-Ne laser is focused along the
array by using a cylindrical lens. A 1-D CCD is used to detect
the beam reflected by the cantilevers. A voltage controlled
oscillator (vco), switch (sw), and amplifier are used to drive
the PZT. The frequency of the vco is controlled by a ramp
generator. A pulse generator, which controls the switch and the
ramp generator, is synchronized to the camera. If the vibration
of a cantilever is large, the deflection of the beam increases and
the image at the cantilever site becomes dark.

1.016f, between time = 0 and 16.2 ms as indicated by
the dotted vertical line in the figure. The experimental
results shown in Figs. 2(a) and 2(b) are different,
although the starting conditions are identical, which is
to be expected for a process initiated by noise. The dark
regions versus time identify the trajectories of large
amplitude localized excitations. At early times ILMs
form, move, oscillate and hop until the chirp ends (dotted
lines). At longer times between 16.2 and 48.9 ms, when
the driver is in the cw fixed frequency mode, those ILMs
synchronous with the driver continue to receive energy
while the others die out. These synchronous, large ampli-
tude, ILMs become pinned. After the pulse, these sta-
tionary ILMs lose energy, become broader, break free
from the pinning site, and sometimes oscillate about it
before decaying. Figure 2(c) shows the results for a
slightly different starting condition, where the driver
frequency is chirped over a larger interval, 0.9986f to
1.034f,. As long as the chirping starts near the top of the
band and ends ~2-3% higher than f,, the different
chirping schemes give similar results. Interestingly, the
number of stable ILMs depends on the detailed frequency
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FIG. 2. Cantilever excitation versus time showing the produc-
tion, pinning and decay of ILMs. Traces (a) and (b) are for a
frequency chirp from 0.9986f, (resonant frequency, f, =
147.0 kHz) to 1.016f,, and trace (c) is for a chirp from
0.9986f, to 1.034f,. The highlighted regions correspond to
the time where the pulse is on. The pulse duration is 48.9 ms.
The chirp ends at 16.2 ms (dotted line). The dark trajectories
near the end of the chirp identify moving and stationary ILMs.
After the chirp ends some ILMs die out while others remained
pinned at a particular site. After the pulse ends all remaining
ILMs die out.

path of the driver. Although not possible to see in this
figure, other experiments show that the strongly excited
pinned ILMs are centered only on the short cantilever
sites, the high frequency vibrator of the di-element.

To simulate the dynamics of an array of cantilever
beams that are coupled together by the overhang region
between them, we ignore the dynamics of the overhang
and assume it acts only as a massless coupler between
cantilevers. For the large amplitude problem of interest,
each cantilever is then represented by a mass and an on-
site potential which has both harmonic (quadratic) and
anharmonic (hard quartic) terms. The coupling between
cantilevers is taken to be harmonic for all cantilever
amplitudes. With such a model, the equations of motion
for a unit cell become
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where x,; and x;; represent displacements of the cantile-
ver ends, m, and m, are their masses, 7 is an energy
lifetime, k,, and k,, are the on-site harmonic spring
constants, k4, and k4, are on-site quartic spring con-
stants, and k; is the harmonic coupling constant. Since
the PZT is bonded to the sample each cantilever feels a
common acceleration, a. The dispersion curve for our
system is obtained from linearized Egs. (1) and (2). The
three free parameters (k,,, ky;, k;) are chosen to give a
good fit to the upper branch of the experimental disper-
sion curve. The values of the on-site quartic spring con-
stants (ky,, k4,) are adjusted so that the upper branch
frequency in the simulation shows the same frequency
shift as observed in the experiment. The 7 is determined
from the linear amplitude decay measurement. The pa-
rameters are given in the caption of Fig. 3.

In the simulation the system is initialized with a small
amount of random noise, which will ultimately act to
perturb the highly excited uniform mode and hence
trigger the modulational instability. The driver frequency
starts at the top of the upper band, then continuously
increases linearly to a frequency 1.029f, over a time
interval of 2500 periods. Next, the driver frequency is
kept at 1.029f until time = 7500 periods at which point
it is turned off.

Figure 3(a) shows an energy density versus time plot
for a particular simulation result. The total number of
cantilevers is 250 with fixed-end boundary conditions.
There is no qualitative difference between simulations
with the periodic- and fixed-end boundary conditions
except near the boundaries. As with experiment, the
entire array is excited uniformly. During the chirping
phase, many ILMs of different strengths appear as shown
in the figure (strength = darkness). Strong ones are nearly
pinned and hop from site to site while weaker ones move
easily through the lattice. Many of the ILMs die out after
~1000 periods of oscillation. In this particular simula-
tion, one ILM clearly persists much longer than the
others. It is identified in Fig. 3(a) as a locked ILM since
its frequency is locked to the driver frequency [21]. This
locking prevents it from decaying like all the other ILMs.
Other ILMs identified with the oval at the top of the
figure, fail to frequency lock, and hence ultimately decay
after a time lapse of about 3000 periods. The reflection of
a running mode by the locked ILM illustrates the rigidity
of such a locked state. (For no driver and a nondissipative
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FIG. 3. Computer simulations of ILM production, locking,
and decay. The driver frequency starts from f,, the top of
the upper dispersion band, increases up to 1.029 f linearly until
the 2500th periods, first dashed interval, and then is held
there during the remainder of the pulse, until 7500 periods.
(a) Energy density versus time. Dark trajectories during the
chirp identify ILMs. The ellipses identify particular processes.
The one pinned ILM which is seen during the cw pulse region
is frequency locked to the driver. The horizontal arrow
shows the energy lifetime (8.75 ms) used in this simulation.
(b) Energy density versus time for the same starting condition
as in (a), except for the initial random noise distribution. Three
locked ILMs are identified. The ellipses identify the decay of
an unlocked ILM and the repulsion of two ILMs, respectively.
Parameters are m, = 5.46 X 10713 kg, m;, = 4.96 X 10~ 13 kg,
7=2875ms, ky, =0.303kg/s?, ky, =0.353kg/s?, Kk =
0.0241 kg/s?, ks, = kqp, = 5.0 X 10% kg/s’m?, and a = 1.0 X
10* m/s?.

system a small amplitude running mode is absorbed by
the driver [19].) Once the driver is turned off, the locked
ILM decays peacefully, maintaining the symmetry of the
mode without further motion in the lattice. This result is
similar to that shown in experiment in Fig. 2(c), although
it should be added that it is much easier to produce locked
ILMs in experiment than in simulations. Figure 3(b)
shows another simulation of energy density versus time.
In this particular example, four modes can be identified
that persist much longer than the others. Three of these
are found to have their frequency locked to the driver.
Even though the fourth one, another large amplitude
ILM, persists after the end of the chirp it still fails to
lock to the frequency of the driver, and hence ultimately
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FIG. 4. Simulated production, locking, and decay of ILMs in
k space. Time-space Fourier transform of the displacement for
the 500 period time windows identified in Fig. 3(a): They are at
(i) 2000 and (ii) 7000 periods, respectively. Frame (a) shows
the time development at the end of the chirp and (b), at the end
of the locked state. For reference the linear dispersion curve of
the upper band is shown (dotted).

decays. The two neighboring locked ILMs are close
enough together that their interaction can be observed
once the pulse is off and the decay begins.

To examine the development of such locked ILMs from
another view the double Fourier transform of the canti-
lever motion shown in Fig. 3(a) is taken over specific time
intervals, identified by the two numbers at the bottom of
that frame. The resulting time evolution of (w, k) excita-
tion plots is shown in Figs. 4(a) and 4(b). The dotted
curves in these figures represent the position of the upper
branch of the linear dispersion curve for the di-element
cantilever array. Figure 4(a) is a time interval at the end
of the chirp. Several insipient ILMs emerge in the k-space
representation. The late stage of the locked state is
shown in Fig. 4(b) where a monochromatic locked
mode appears.

Our experimental technique, which images and
records the time dependent vibration envelope of a di-
element micromechanical oscillator array in the presence
of a chirped driver, shows the evolution of the unstable
uniform mode into ILMs. Initially traveling ILMs are
created but finally these modes are pinned at an individ-
ual lattice site. The fact that nearly identical experimental
starting conditions give completely different localized
pinning sites in Figs. 2(a)—2(c) strongly supports our
claim that the localized excitations in the cantilever array
are ILMs, not impurity-induced localized modes. From
our simulations, it is found that these same spatially
pinned ILMs are frequency locked to the driver so that
their amplitudes, which in the unlocked state can have
any value, now become fixed. More generally, our experi-
ments show that such locked ILMs are a robust feature of
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a driven nonlinear periodic system with damping and it is
to be expected that such monochromatic ILMs could also
be produced in the nonlinear low lying excitations of
atomic lattices.
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