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We investigate Rayleigh scattering in dissipative optical lattices. In particular, following recent
proposals [S. Guibal et al., Phys. Rev. Lett. 78, 4709 (1997); C. Jurczak et al., Phys. Rev. Lett. 77, 1727
(1996)], we study whether the Rayleigh resonance originates from the diffraction on a density grating
and is therefore a probe of transport of atoms in optical lattices. It turns out that this is not the case: the
Rayleigh line is instead a measure of the cooling rate, while spatial diffusion contributes to the
scattering spectrum with a much broader resonance.
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Light scattering [1], i.e., the scattering of photons
resulting from the interaction with a material medium,
is a technique widely used to determine the properties of
many different types of media. From the position and the
width of the scattering resonances it is in fact possible to
identify the dynamical modes of the system and derive
the rates of relaxation toward equilibrium. This is well
exemplified by the Landau-Placzek relation, valid for
light scattering originating from the density fluctuations
of a medium at thermal equilibrium, which connects the
strength of the different components of the scattering
spectrum to the specific heats of the medium at constant
volume and constant pressure.

Recently light scattering has been extensively used to
study the properties of cold atomic samples, and, in
particular, it turned out to be an essential tool for the
understanding of the basic properties of dissipative opti-
cal lattices [2]. The same technique may also apply to
far-off-resonance nondissipative optical lattices which
are currently investigated by many groups in connection
with Bose-Einstein condensation experiments [3]. How-
ever to derive the damping rates of the system from light
scattering measurements is in general a highly nontrivial
task. This is especially true for quasielastic (Rayleigh)
scattering [4—6], which gives access to the relaxation
rates of nonpropagating material observables. In this
work we investigate the mechanism behind the Rayleigh
scattering in dissipative optical lattices and identify the
relaxation process which determines the width of the
Rayleigh resonance in the scattering spectrum.

The starting point of the present study is the previous
claim that Rayleigh resonances may originate from the
excitation of the atomic density, and consequently the
width of the Rayleigh line would provide a measure
of the diffusion coefficients of the atoms in an optical
lattice [5]. Following a similar approach, Jurczak et al. [6]
derived values for the diffusion coefficients from
polarization-selective intensity correlations.

In our analysis we first assume, along the lines of these
previous works, that the material observable excited in
the pump-probe spectroscopy is the atomic density and
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derive the expected relation between the width of the
Rayleigh resonance and the spatial diffusion coefficients.
Through experimental and theoretical work we show that
this relation is actually not satisfied by independent mea-
surements/calculations of the width of the resonance and
the diffusion coefficients. Instead, we show that the nar-
row Rayleigh resonance originates from the atomic ve-
locity damping, i.e., the width of the resonance is a
measure of the cooling rate, while spatial diffusion con-
tributes to the scattering spectrum with a much broader
resonance.

Consider first the general relation between the width of
the Rayleigh line and the relaxation rate of the material
observable excited in the optical process. In the basic
setup of pump-probe spectroscopy, an atomic sample
interacts with two laser fields: a strong pump beam,
with frequency w, and a weak probe beam with frequency
w + 6. The superimposition of the pump and probe fields
results in an interference pattern moving with phase
velocity v = 8/|Ak|, with Ak the difference between
pump and probe wave vectors. The atomic sample tends
to follow the interference pattern and a grating of an
atomic observable (typically density, magnetization, or
temperature) is created. However due to the finite re-
sponse time of the atomic medium the material grating
is phase shifted with respect to the light interference
pattern. Therefore the pump beam can be diffracted on
the material grating in the direction of the probe, mod-
ifying the probe transmission. It is then clear that it
should be possible to derive information about the atomic
response time from the transmission spectrum. More
precisely if we assume that only one atomic observable
is excited in the optical process, and that the time evolu-
tion of this observable is characterized by a single relaxa-
tion rate vy, the probe gain spectrum g(8) has then a
dispersive line shape

- ey
§ y? + 8
with peak-to-peak distance 2+, as derived in [7].
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Consider now the specific configuration with linearly
polarized pump and probe beams, the two polarization
vectors being parallel. The resulting intensity interference
pattern gives rise, via the dipole force, to a grating of the
atomic density n of the form

n=ny+ niexp[—i(6-r— Ak-H]+cecl ()

We assume now, following previous work [5], that the
Rayleigh resonance originates from the scattering on this
atomic density grating. It follows that the width of the
Rayleigh line is related to the spatial diffusion coeffi-
cients. Indeed the relaxation mechanism of a grating of
atomic density is spatial diffusion: atoms have to move to
destroy the density grating. More quantitatively, if we
assume that the dynamics of the atoms in the optical
lattice is well described by Fick’s law
2 2 2

0 P P P
ot ax dy 0z
where D; (i = x, y, z) is the spatial diffusion coefficient in
the i direction, we find substituting the expression (2) for
n in (3) that the relaxation rate yp of the atomic density,
defined by

3)

% = —Yph, (4)
is given by
yp = D,AK% + D, Ak} + D AK%. 5
Under the assumption that the Rayleigh resonance origi-
nates from the scattering on the atomic density grating,
the half-distance peak to peak of the Rayleigh line yy is
simply equal to the relaxation rate yp, and therefore
measurement of yp allows the determination of the dif-
fusion coefficients, as in Refs. [5,6]. The validity of this
approach will be tested by comparing results for the
relaxation rate vy, with measurements of the width of
the Rayleigh resonance, as presented below.

In our experiment rubidium atoms are cooled and
trapped in a three-dimensional (3D) lin L lin near reso-
nant optical lattice [2]. The periodic structure is deter-
mined by the interference of four linearly polarized laser
beams, arranged as in Fig. 1. The angle 26 between
copropagating lattice beams is equal to 60°. This four-
beam configuration is the same, except for the value of
the angle 6, as the one considered in the works of Guibal
et al. [5] and Jurczak et al. [6].

To determine in a direct way the spatial diffusion
coefficients of the atoms in the optical lattice, we observe
the atomic cloud expansion by using a charge coupled
device camera [8-10]. Since the x and y directions are
equivalent in our lattice (see Fig. 1), we chose to take
images in the £0z plane, where ¢ is the axis in the xOy
plane forming an angle of 45° with the x and y axes.
Correspondingly, we determined the diffusion coeffi-
cients D¢ and D, in the § and z directions, with results
as in Fig. 2.

These values for the diffusion coefficients are not con-
sistent with the value of about 10 /M determined for the
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FIG. 1. Sketch of the experimental setup.

same configuration by Jurczak et al [6] by polarization-
selective intensity correlations. As we will show in the
following, this inconsistency derives from the unreliabil-
ity of the determination of the diffusion coefficients by
light scattering measurements, as this derivation of the
diffusion coefficients is based on the assumption that the
narrow Rayleigh resonance originates from the diffrac-
tion on an atomic density grating.
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FIG. 2. Experimental results for the spatial diffusion coeffi-
cients in the ¢ and z directions as functions of the intensity
per lattice beam I; and for different values of the lattice
detuning A.
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We turn now to the measurements of the width of the
Rayleigh resonance. The y polarized probe beam is de-
rived from the lattice beams, with the relative detuning
controlled with acousto-optical modulators. This probe
beam is sent along the z axis through the cold atomic
sample (Fig. 1) with its frequency scanned around the
lattice-beams’ frequency. The probe can interfere with the
different lattice beams, which play the role of the pump.

A typical probe transmission spectrum is shown in
Fig. 3. The lateral resonances have been characterized in
great detail in past investigations [11], and we focus here
on the resonance at the center of the spectrum (inset of
Fig. 3). To determine whether this Rayleigh resonance can
be associated with the relaxation mechanism of spatial
diffusion, we made a systematic study of the width of the
resonance as a function of the interaction parameters
(lattice-field intensity and detuning).

The peak-to-peak distance 2y, of the Rayleigh reso-
nance has been determined by fitting the central part of
the probe transmission spectrum with the function

03 + 045
& +vr vk

f(8) =a; +ayé + (6)
Here the linear term in detuning describes the wings of
the sideband resonances [11]. The Lorentzian resonance
arises from the radiation pressure, and has the same
width of the dispersive line, as discussed in Ref. [5].
Experimental results for y, are reported in Fig. 4 as a
function of the lattice beam intensity, for different values
of the lattice detuning.

We now describe the determination of y . In the exam-
ined configuration the probe beam can interfere simulta-
neously with all lattice beams. Therefore the situation is
slightly more complicated than the one analyzed previ-
ously leading to Eq. (5), and to derive the link between
the width of the Rayleigh resonance and the diffusion
coefficients we have to calculate the interference pattern
between the probe and the lattice beams. By using the
expression for the lattice-beams electric fields for a 3D
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FIG. 3. Probe transmission as a function of the detuning
between probe and lattice beams, T and T being the intensity
of the transmitted probe beam with and without the atomic
cloud. The inset shows a slow scan of the region around zero
detuning, together with the fit with the function (6) (solid line).
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lin L lin optical lattice [2], we easily find that the inten-
sity modulation produced by the probe beam is

S|E|? ~ E,Ecos(Kx)exp{i[ (K, — k)z + & - t]} + c.c,
@)

with E, (E,) the amplitude of the lattice (probe) field,
K = ksinf and K, = kcosf. Substituting in Fick’s law,
Eq. (3), the resulting modulation for the atomic density
we find that the relaxation rate vy, defined via Eq. (4), is
in the present case

¥ = D,(ksin#)?> + D_k*(1 — cosf)>. (8)

This equation is consistent with the relation derived
in Ref. [5] in the limit of small #. To determine whether
the rate vy, of relaxation of the atomic density is equal
to the width of the Rayleigh resonance, we calculate from
the values D¢, D, of Fig. 2 the relaxation rate yp of the
atomic density, using Eq. (8), with results as in Fig. 4. For
the same range of interaction parameters the relaxation
rate yp is 4 orders of magnitude larger than the half-
distance peak to peak vy of the Rayleigh resonance. We
therefore conclude that the Rayleigh resonance does not
originate from the diffraction on an atomic density gra-
ting, and therefore measurements of the width of the
Rayleigh line do not allow the determination of the
spatial diffusion coefficients.

Our conclusions, based on the presented experimental
findings, are supported by numerical calculations. We
consider a J, = 1/2— J, = 3/2 atomic transition, as
customary in numerical analysis of Sisyphus cooling.
Taking advantage of the symmetry between the x and y
directions (see Fig. 1), we restricted the atomic dynamics
to the xOz plane. Through semiclassical Monte Carlo
calculations [12,13], we simulate the dynamics of the
atoms in the optical lattice. From the atomic trajectories
we determine then the probe transmission spectra and the
evolution of the atomic mean square displacements. We
calculate the width of the Rayleigh line and the spatial
diffusion coefficients. From these diffusion coefficients
we then derive through Eq. (8) the relaxation rate of the
atomic density. The comparison between the numerically
calculated yy and 7yp, as shown in Fig. 5, confirms that
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FIG. 4. Left panel: Experimental results for the half of the

peak-to-peak distance of the Rayleigh resonance. Right panel:

Relaxation rate y, of the atomic density, as calculated from the

experimental data for D, and D, using Eq. (8). Both quantities

are plotted as functions of the intensity per lattice beam, for
different values of the lattice detuning.
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FIG. 5. Numerically calculated relaxation rate of the atomic
density yp, half-distance peak to peak yy of the Rayleigh line
and relaxation rates I'z , I'7_ of the atomic temperature in the x
and z directions. All these quantities are reported as functions
of the optical pumping rate I'}), for different values of the light
shift per beam A{. Here w, is the atomic recoil frequency.

the width of the Rayleigh line does not correspond to the
rate of relaxation of the atomic density.

The final step of our analysis consists in identifying the
damping process which leads to the phase shift producing
the Rayleigh scattering. Inspired by previous studies of
stimulated Rayleigh scattering in corkscrew optical mo-
lasses [14], we numerically examined the damping pro-
cess of the atomic velocity in the optical lattice and
calculated the relaxation rates I'z, I'r. of the atomic
temperature in the x and z directions, with results as in
Fig. 5. It appears that the damping rates of the atomic
temperature not only are of the same order of magnitude
of the width of the Rayleigh line, but that they also
display the same linear dependence on the optical pump-
ing rate I}, at fixed light shift per beam A}, i.e., at fixed
depth of the potential wells. More precisely, neglecting
Iy as 'y, < T’y we find from the data of Fig. 5 that

Yr = 0.13(£0.0)wp + 0.25(x0.02T7.  (9)

This shows that for an optical lattice the width of the
Rayleigh line is a measure of the cooling rate, a behavior
already encountered in corkscrew optical molasses. It is
then legitimate to investigate the eventual contribution of
the light scattering on the density grating to the probe
transmission spectrum. By fitting the broad wings of the
numerically calculated spectra with a dispersive function,
we found that the corresponding width is approximately
equal to the relaxation rate yp. This shows that the
scattering on the density grating contributes to the probe
transmission spectrum with a resonance much broader
than the narrow line observed at the center of the spectra.
In other words, the information on the spatial diffusion
coefficients is contained in the broad wings (w =
10 MHz) of the scattering spectrum, and not in the cen-
tral narrow resonance.

In summary, in this work we investigated the connec-
tion between Rayleigh scattering and the atomic dynam-
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ics in dissipative optical lattices. In particular, following
recent proposals [5,6], we studied whether the Rayleigh
resonance originates from the diffraction on a density
grating, and is therefore a probe of transport of atoms
in optical lattices. It turns out that this is not the case: the
Rayleigh line is instead a measure of the cooling rate,
while spatial diffusion contributes to the scattering spec-
trum with a much broader resonance.
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