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Dynamically Stabilized Bright Solitons in a Two-Dimensional Bose-Einstein Condensate
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We demonstrate that a matter-wave bright soliton can be stabilized in 2D free space by causing the
strength of interactions to oscillate rapidly between repulsive and attractive by using, e.g., Feshbach
resonance.
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r2 � g�t�j j2 ; (1) and the monopole moment hri � rj j dr rapidly oscil-

late at frequency �. We note here that the dynamics of
A pendulum with an oscillating pivot can have a stable
configuration with its bob situated above the pivot (the
inverted pendulum [1]). This well-known but surprising
phenomenon is attributed to a net stabilizing force pro-
duced by alternating stabilizing and destabilizing forces
at a frequency much faster than the natural oscillation
frequency of the fixed-pivot pendulum. Similar physics
has been employed to focus beams of charged particles in
a synchrotron (alternating-gradient focusing [2]) and to
trap ions in the Paul trap [3]. In this Letter, we present a
novel application of such a stabilizing mechanism to
producing a bright soliton in a two-dimensional (2D)
Bose-Einstein condensate (BEC). By a ‘‘bright’’ soliton
we mean a stable, solitary wave whose density is greater
than the background one.

In 1D, when the interatomic interaction is attractive,
bright solitons can be stabilized even without a trapping
potential [4,5]. In 2D or 3D free space, however, the
kinetic pressure and the attractive force cannot balance,
and the condensate always collapses or expands. This can
be understood by the following simple argument. When
the characteristic size of the condensate is R, the kinetic
and interaction energies are proportional to R�2 and
�R�d in d dimensions, and an effective potential for R
is the sum of these energies. The effective potential,
therefore, has a minimum only for d � 1. Here we present
a novel method to stabilize a soliton in 2D by causing the
interaction to oscillate rapidly using, e.g., Feshbach reso-
nance [6,7].

The system considered here is a BEC confined in a
quasi-2D axisymmetric trap [8], where the axial confine-
ment energy �h!z is much larger than the radial confine-
ment and interaction energies. We assume that the
condensate wave function  is always in the ground state
of the harmonic potential with respect to the z direction,
and that the dynamics are effectively 2D in the x-y plane;
we will justify these assumptions later. We let the radial
confinement frequency !?�t� and the s-wave scattering
length a�t� vary in time. The system is then described by
the Gross-Pitaevskii (GP) equation:

!2 �t�
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where r2 	 x2 � y2 and g�t� 	 �8�m!z= �h�
1=2Na�t�

describes the strength of interactions. In Eq. (1), length,
time, frequency, and  are measured in units of d0 	

 �h=�m!?0��

1=2, !�1
?0, !?0, and N1=2=d0, where !?0 	

!?�0�.
We make the strength of interaction oscillate rapidly at

frequency �. The oscillation of the scattering length with
� ’ !? is studied in Ref. [9] in a different context.
Experimentally, the speed of the change in the strength
of interaction using Feshbach resonance is limited by that
of the applied magnetic field 
1 G=�s [10], which is
sufficient for our purpose. In order to avoid nonadiabatic
disturbances that destabilize a soliton state, we gradually
switch on the interaction and simultaneously turn off the
radial confinement potential as

g�t� � f�t��g0 � g1 sin�t�; (2)

!2
?�t� � 1� f�t�; (3)

where f�t� is a ramp function given by

f�t� �
�
t=T �0 � t � T�
1 �t > T�:

(4)

The interaction and the confinement potential can
be changed independently using an optical trap and
magnetic-field-induced Feshbach resonance.

We numerically solve the GP equation (1) with time-
dependent parameters (2)–(4) using the Crank-Nicholson
scheme [11]. The initial state is assumed to be the non-
interacting ground state in the presence of the radial
confinement potential with !?0. We gradually increase
the strength of interaction and switch off the trap accord-
ing to the linear ramp (4) with T � 20. Figure 1 demon-
strates the dynamic stabilization of a soliton in 2D, where
the parameters used are g0 � �2�, g1 � 8�, � � 40
[Fig. 1(a)], and � � 30 [Fig. 1(b)]. Since the value of
g0 � �2� exceeds the critical strength of attractive in-
teraction for the collapse gcr ’ �5:8 [12], the condensate
would collapse if the oscillating term g1 sin�t were ab-
sent. Even after the radial confinement potential vanishes
(t > 20), the soliton shape is maintained as shown in the
insets of Fig. 1. The plots of the peak density j �r � 0�j2R
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FIG. 1. Time evolution of the peak density j �r � 0�j2 and
the monopole moment hri �

R
rj j2dr. The interaction g�t� �

�2�� 8� sin�t is switched on and simultaneously the radial
confinement potential is switched off from t � 0 to 20 accord-
ing to Eq. (4), where � � 40 in (a) and � � 30 in (b). The
plots oscillate rapidly at � (which is beyond the resolution
limit of the graph), and the vertical width of the plots repre-
sents the amplitude of the rapid oscillations. The insets show
the density profiles j �r�j2 at t � 50 (solid curves) and t � 0
(dashed curves).
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BEC can be separated into two parts: a rapidly oscillating
part with small amplitude and a slow, smoothly varying
part. After the rapid oscillations are averaged out, the
width and the peak density are fairly constant as seen in
Fig. 1(a). However, when the nonadiabaticity of ramp
function f�t� is not negligible, the lowest breathing
mode (but no other radial modes) is excited as illustrated
in Fig. 1(b), where the breathing mode is caused by an
effective potential due to the oscillating interaction [see
Eqs. (9)–(11)]. The amplitude of the excitation decreases
with increasing ramp time T. Such excitations can
be suppressed by choosing the appropriate ramp func-
tions for g�t� and !?�t�. We have confirmed that no
040403-2
symmetry-breaking mode grows in the azimuthal direc-
tion. The system is therefore free from such modulational
instabilities.

We checked the validity of the quasi-2D approximation
by numerically integrating the GP equation in 3D axi-
symmetric systems with large asymmetry parameters
!z=!? 
 50 and found that soliton stabilization occurs
without axial modes being excited. Our prediction of
dynamically stabilizing a bright soliton in 2D is, there-
fore, experimentally feasible with an oblate trap as real-
ized by the MIT group [8].

To understand the behavior in Fig. 1, we employ
a variational method with a Gaussian wave function
[9,13,14]

 �r; t� �
1����
�

p
R�t�

exp

�
�

r2

2R2�t�
� i

_RR�t�
2R�t�

r2
�
; (5)

where R�t� is the variational parameter that characterizes
the size of the condensate, and the imaginary term in the
exponent describes mass current. Substituting Eq. (5) into
the action that derives the GP equation (1) and minimiz-
ing the action with respect to R�t�, we obtain the equation
of motion for R�t� as

�RR�t� �
1

R3�t�
�
g0 � g1 sin�t

2�R3�t�
; (6)

where we set f�t� � 1. We separate R�t� into the slowly
varying part R0�t� and the rapidly oscillating part ��t� as
R�t� � R0�t� � ��t� [1]. When � � 1, ��t� becomes of
the order of ��2, and we keep the terms of the order of up
to ��2 in the following analysis. Substituting this R�t�
into Eq. (6), we obtain the equations of motion for the
rapidly and slowly varying parts as

����t� �
g1

2�R3
0�t�

sin�t; (7)

�RR0�t� �
g0 � 2�

2�R3
0�t�

�
3g1

2�R4
0�t�

��t� sin�t; (8)

where the overline indicates the time average of
the rapid oscillation. Equation (7) yields ��t� �
�g1=
2��

2R3
0�t�� sin�t. Substituting this into Eq. (8),

we obtain the equation of motion for the slowly varying
part as

�RR0 � �
@
@R0

�
g0 � 2�

4�R2
0

�
g21

16��2R6
0

�
	 �

@U�R0�

@R0
: (9)

The minimum of the effective potential U is attained at

R4
min � �

3g21
4��2�g0 � 2��

; (10)

and the frequency of small oscillations (breathing mode)
around the minimum is given by
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FIG. 2. (a) �g1=��1=2 dependence of the monopole moment
hri and (b) �=g1 dependence of the breathing-mode frequency
!br, where g0 � �2�. The circles are obtained by varying g1
for � � 30, and the squares by varying � for g1 � 8�. The
dashed lines show 1:06�g1=��1=2 in (a) and 0:32�=g1 in (b),
which are determined to best fit the plots.
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!2
br �

8�2

3g21
�g0 � 2��2: (11)

The Gaussian approximation thus indicates that a soliton
is stable for g0 <�2�.

The physical mechanism of soliton stabilization can be
understood from the above discussion. In the inverted
pendulum, the interplay between the micromotion of the
bob and the force gradient (i.e., stronger oscillating force
for larger deviation from the equilibrium position) pro-
duces a pseudopotential. Since the pseudopotential is
proportional to the square of the amplitude of the oscil-
lating force [1], a potential barrier is formed around the
equilibrium position, thereby preventing the pendulum
from swinging down. Such a mechanism also stabilizes
a BEC in a double-well potential with oscillating inter-
action [15] and an optical beam propagating in nonlinear
medium with an alternating nonlinearity [16]. In the
present case, the oscillating ‘‘force’’ for R is given by
g1 sin�t=�2�R

3�, which becomes larger for smaller R.
This force gradient and the micromotion of R produce a
pseudopotential proportional to the square of the force /
R�6, which prevents the system from collapsing by coun-
teracting the �R�2 term that describes the attractive
interaction.

In order to stabilize the soliton, jg0j must exceed the
critical value of collapse, jgcrj ’ 5:8, which is smaller
than that obtained with the Gaussian approximation,
jgcrj � 2�, since the Gaussian wave function underesti-
mates the peak density [14]. In fact, the GP equation
predicts that a soliton state for g0 � �2� is stable
(Fig. 1). Although the Gaussian approximation does not
accurately describe the exact soliton stability condition,
Eqs. (10) and (11) capture the g1 and � dependences of
Rmin and !br. Figure 2(a) illustrates the monopole mo-
ment hri versus �g1=��1=2, where the circles are obtained
by varying g1 and the squares by varying �. We note that
the plots are fairly well proportional to �g1=��1=2, in
agreement with Eq. (10). Figure 2(b) shows the frequen-
cies !br of the slow oscillations [as shown in Fig. 1(b)]
versus �=g1. The plots are linear in �=g1, which is
consistent with Eq. (11).

The appropriate parameter range for stabilizing soli-
tons with size R ’ 1 is found to be 0:4 & g1=� & 1:2 and
g0 ’ �2� for � much larger than the breathing-mode
frequency !br. For � & 10, the rapid oscillations are
disturbed by nonadiabatic slow dynamics, and the soliton
becomes unstable. In analogy with the inverted pendulum
problem, this corresponds to a situation in which the
pendulum bob falls a long way during a single pivot cycle
at a low pivot oscillation frequency. Thus, the effective
force fails to stabilize the pendulum bob. When g1=� is
small or jg0j is large, the effective force is not sufficient to
prevent the atoms from accumulating at the center. As a
result, the peak density first grows, the condensate then
expands due to the R�6 potential, and subsequently most
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of the expanded atoms accumulate at the center due to the
�R�2 potential. Thus, the condensate repeatedly con-
tracts and expands. In each expansion, atoms that are
elastically scattered with high energy cannot return to
the soliton region due to the absence of the external
confinement potential, and the condensate gradually
decays.

In conclusion, we have demonstrated that a matter-
wave bright soliton can be stabilized in 2D free space
by oscillating the strength of the interaction around an
attractive value g0 < gcr with an amplitude g1 > jg0j. The
rapid oscillation of interaction produces an effective bar-
rier that prevents the condensate from collapsing and
stabilizes a soliton. This novel technique of increasing
dimensions of a matter-wave bright soliton might be
applied for quantum information processing using BEC
solitons on a microchip substrate [17]. It merits further
study to examine whether BEC ‘‘droplets’’ in 3D can be
created with appropriate parameters and ramp schemes.
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Note added.—After submission of our Letter, a paper
appeared [18] which reached the same conclusion that a
bright soliton can be stabilized in 2D with a similar
scheme.
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