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We derive via diagrammatic perturbation theory the scaling behavior of the condensate and super-
fluid mass density of a dilute Bose gas just below the condensation temperature, Tc. Sufficiently below
Tc particle excitations are described by mean field (Bogoliubov). Near Tc, however, mean field fails, and
the system undergoes a second order phase transition, rather than first order as predicted by Bogoliubov
theory. Both condensation and superfluidity occur at the same Tc, and have similar scaling functions
below Tc, but different finite size scaling at Tc to leading order in the system size. A self-consistent two-
loop calculation yields the condensate fraction critical exponent, 2� ’ 0:66.
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leading order finite-size corrections to n0 and �s at Tc,
which provides insight into the difference of the numeri-

where the zn�2�inT are Matsubara frequencies �n�
0;�1;�2; . . .�, "k�k2=2m, and the �ij�k;zn� are the
The behavior of a dilute interacting homogeneous Bose
gas at the condensation temperature, Tc, and in its neigh-
borhood, is a delicate critical problem ([1–3], and refer-
ences therein). Even though in a dilute gas, where
na3 � 1, with n the number density and a the s-wave
particle-particle scattering length, perturbation theory
fails close to Tc, and fluctuations cannot be neglected;
e.g., although the shift in Tc from the free gas transition
temperature, T0

c , is linear in a, the first order perturba-
tion result vanishes, while all higher order terms are
divergent.

We calculate here the dependence on a of the conden-
sate density, n0, and the superfluid mass density, �s, of a
dilute Bose gas in three spatial dimensions, for tempera-
tures T just below Tc, where t � �Tc � T�=Tc is of order
a=�. Here � � �2�=mT�1=2 is the thermal wavelength in
units with �h � 1, and m is the particle mass. As long
established, the Bogoliubov (mean field) approximation
fails close to Tc; it leads to a first order phase transition
(e.g., [4]) vs the second order transition expected for the
universality class of the Bose gas. A similar phenomenon
occurs in relativistic �4 theory [4]; a related discussion
for a two dimensional Bose gas is given in Ref. [5]. We
derive the general scaling structure of both n0 and �s in
the critical region, as functions of t and a=�, which
connects the mean field solution to the critical behavior
of a continuous phase transition. The scaling functions for
n0 and �s are similar, and imply that in the (dilute)
interacting Bose gas the phenomena of condensation and
superfluidity occur at precisely the same temperature.
A further consequence is that in the very dilute limit,
a! 0, where the shift of the critical temperature is
linear, Tc � T0

c 	 a [1–3,6], the condensate and super-
fluid mass densities at the ideal gas critical temperature,
T0
c , both vary linearly with a. We also calculate the
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cal results of Refs. [3,7] for the shift of the critical
temperature.

Our approach is to study the particle densities via
diagrammatic perturbation theory, working to the lowest
needed order in a and n0. To deduce the behavior of the
superfluid mass density we employ Josephson’s relation
between �s, n0, and the long wavelength limit of the
single particle Green’s function [8–10].

The particle density, n, in the condensed phase is a
function of a, n0, and T, and has the form n�a; n0; T� �
n0 
 ~nn�a; n0; T�, where ~nn�a; n0; T� is the density of non-
condensed particles (with momentum k � 0). At the
transition temperature, ~nn�a; 0; Tc� � n; thus writing
	~nn � ~nn�a; n0; T� � ~nn�a; 0; T�, we have n0 
 	~nn �
~nn�a; 0; Tc� � ~nn�a; 0; T�. Since the difference of Tc from
the ideal gas transition temperature, T0

c , is of order a [1],
we may, to lowest order in a, for t of order a=�, replace
the difference on the right side by ~nn�0; 0; Tc� �
~nn�0; 0; T� � n��Tc=T�3=2 � 1� ’ 3

2 n t. Up to corrections
of order a2, we have then

n0 
 	~nn � 3
2n t: (1)

Equation (1) implicitly determines the condensate frac-
tion, n0�a; t�, as a function of a and t in the critical region,
t & a=� or n0=n & a=�.

It is simplest to calculate ~nn�a; n0; T� in terms
of the matrix Green’s function, G�rt; r0t0� �
�i�hT�
�rt�
y�r0t0��i � h
y�r0t0�ih
�rt�i�, where the
two component field operator is 
�rt� � � �rt�;  y�rt��.
The Fourier components of G�1 have the form

G�1�k;zn��
�
zn
��"k��11 ��12

��21 �zn
��"k��22

�
;

(2)
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corresponding self-energies. The chemical potential, �,
depends here on n0.

The noncondensate density, ~nn, is then found from

~nn�a; n0; T� � �T
X
n

Z d3k

�2��3
G11�k; zn�; (3)

with

G11�k;z��
z��
"k
�22

�z
��"k��11��z��
"k
�22�
�12�21
:

(4)

Quite generally, 	~nn, to leading order in a and n0, is given
by the zn�0 contribution only:

	~nn��T
Z d3k

�2��3
�G11�k;0��G�k;0��; (5)

where G�k;0�� limn0!0G11�k;0�; integrated over k,
G�k;0� determines the leading order shift of the critical
temperature due to interactions [1]. The Hugenholtz-
Pines relation [11],

���11�0;0���12�0;0�; (6)

specifies � as a function of n0. In the zero fre-
quency sector, �11�k;0���22�k;0� and �12�k;0��
�21�k;0�, so that limk!0�����11�k;0������22�k;0���
�12�k;0��12�k;0���0, and thus the excitation spectrum is
gapless. In the following we drop the Matsubara fre-
quency index, always referring to the zero frequency
components.

The lowest order mean field self-energies, �11 �
�mf

11 � 2g�n0 
 ~nn�, �12 � �mf
12 � gn0, and � �

g�n0 
 2~nn�, where g � 4�a=m, lead to the usual gapless
Bogoliubov excitation spectrum. The mean field contri-
bution to 	~nn, from Eq. (5), is

	~nnmf � �
2

��2

Z
dk

�mf
12

"k 
 2�mf
12

� �
2�1=2

�3 �n0�
2a�1=2:

(7)

Since the contribution of this term in Eq. (1) is / �n1=20 ,
we find two possible solutions of (1) for n0 at the mean
field critical temperature, tmf � 0, namely n0 � 0 and
n0 � 4�a=�4; intermediate values are not possible for
t > 0. Thus Bogoliubov theory predicts a first order phase
transition with a jump of the condensate density from 0 to
n0 � 4�a=�4 [4]. However, as we discuss below, mean
field can be valid only outside the critical region (where
a=�� jtj � 1, and thus from Eq. (1), a� n0�

4), where
it implies that n0 / t.

To go beyond mean field we analyze the structure of the
self-energies by expanding �11 � �mf

11 and �12 ��mf
12 in a

series in a and the mean field Green’s functions Gmf
11 and

Gmf
12 , given by Eq. (2) with the �ij replaced by �mf

ij . We
eliminate � in G in favor of n0 using Eq. (6). However,
rather than using the gapless spectrum directly in a
040402-2
perturbative expansion, we write the propagators in terms
of the mean field correlation length, � , as in [1], defined
by

�� ��mf
11 ��mf

12 � � ��11�0� � �12�0��� ��mf
11 � �mf

12 �

� �1=2m�2:

(8)

Since the propagators remain formally infrared con-
vergent we can derive the scaling structure of the self-
energies by power-counting arguments. As above the
transition, the ultraviolet part, when we neglect nonzero
Matsubara contributions, has only a harmless logarith-
mic divergence which can be removed by renormalization
[1]. The expansion of the self-energies beyond mean field
starts at order a2; furthermore, �12 is formally at least of
order n0. Diagrams of order a� with � � 3 in the formal
expansion contain vertices with two Green’s functions
entering; similar to the structure at Tc, they involve the
dimensionless combinations a�=�2 and n0�2� . The latter
part originates from the dependence of Gmf on 2m�mf

12 	
an0. Any diagram with an explicit power, p, of n0 can be
generated from a corresponding diagram of power p� 1
in which a line is replaced by

�����
n0

p
at each of its ends. Thus

each power of n0 involves one fewer three-momentum
loop to be integrated over, replacing a structure of the
form 2mT

R
d3k=�k2 
 ��2� 	 ��1��2, in a loop integral

of order �a�=�2�2, by n0. The explicit n0 dependences
therefore enter in the combination �a�=�2�2�n0��

2� �
a2n0�3=�2. Then with all momenta k scaled by 1=� , we
find the following scaling structure for the self-energies:

�ij�k� ��mf
ij �0� � T

a2

�2
!ij

�
k�;

a�

�2
; n0�

2�
�
; (9)

where the !ij are dimensionless functions of dimension-
less variables. In particular, for vanishing k,

��11�0� � �12�0��� ��mf
11 �0� ��mf

12 �0��

� T
a2

�2
s
�
a�

�2
; n0�2�

�
; (10)

where s is a dimensionless function.
Equations (8) and (10) imply that

� �
�2

a
h�n0�

4=a�; (11)

where h is a dimensionless function. Then using Eqs. (9)
and (11) in (5), we see that 	~nn has the scaling structure
	~nn � �a=�4�~ff�n0�

4=a�. It immediately follows that
close to Tc, where n0 	 a=�4, the dimensionless function
~ff cannot be determined by a perturbation expansion in
n0�3 or a=�; therefore the predictions of mean field
theory fail in this region. Finally from Eq. (1), using n	
1=�3 to lowest order, we derive the basic scaling result in
the critical region,
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n0
n

�
a
�
f
�
t�
a

�
; t &

a
�
; (12)

where f is a dimensionless function. In the mean field
limit, x! 1, we must have f�x! 1� 	 x, whereas the
theory of critical phenomena implies a power-law behav-
ior in the opposite limit, f�x! 0� 	 x2;�, or

n0
n
	

�
a
�

�
1�2�

t2�;
t

a=�
! 0; (13)

where � is the critical index for the order parameter,
h i �

�����
n0

p
.

We see that for constant t�=a, n0 varies linearly with a.
As a! 0, Tc varies linearly in a [1]; thus at the ideal gas
transition temperature t � t0 � �Tc � T0

c �=Tc 	 a, for
a! 0, the condensate fraction varies linearly with a.
This result is consistent with Leggett’s weak variational
bound that at t0, n0 is bounded above by terms of order
a1=3 [12].

We now calculate the scaling function f�x� explicitly
within a simple model beyond the Bogoliubov approxi-
mation. Introducing U�k� � 2m��11�k� � �11�0��, we
have "k 
 �11�k� �� � �k2 
U�k� 
 2m�12�=2m.
Taking for �12�k� only the first order diagram in n0,
�12 � �mf

12 � gn0, we may write Eq. (5) as

	~nn ’ �
4mgn0
��2

Z 1

0
dk

k2

�k2 
U�k���k2 
U�k� 
 4mgn0�
:

(14)

Were we to neglect U�k�, we would derive the mean field
result (7); rather, we determine U�k� from a self-consis-
tent two-loop calculation, as in [1],

U�k���4mg2T2
Z d3q

�2��3

Z d3p

�2��3
G�p
q�G�p�

��G�k�q��G�q��; (15)

where G�1�k����"k�U�k�=2m is the inverse of the
(zn�0) Green’s function at the transition temperature. A
free particle spectrum in G would lead to a logarithmic
infrared divergence. As in the calculation of the critical
temperature, self-consistency ofU�k� at this level implies
that it has the approximate structure, U�k��k1=2c k3=2, for
nonzero k&kc, with kc�32�2�=15�1=2a=�2�20:7a=�2

[1]. A change of the power-law behavior of the free
propagator to G�k�	�k��2�%�, for k!0, with %>0, is
possible only at precisely Tc, where the correlation length
diverges. As long as n0 �0, the Bogoliubov operator
inequality [9], �G11�k;0��mn0=nk

2, does not permit
%>0. Therefore the zn�0 spectrum remains quadratic,
%�0, as k!0, everywhere below and above the critical
temperature.

However, for n0�4 � a, the details of the spectrum at
small k do not enter, and we may approximate the self-
energy as
040402-3
U�k� �

(
k1=2c k3=2: k� kc;
k2c: k� kc;

(16)

which in Eq. (14) leads to

	~nn ’

�
�32n0a=3kc�

2� ln�16�n0a=k
2
c�: n0�

4 � a;
��2�1=2=�3��n0�2a�1=2: n0�4 � a:

(17)

The second line is the mean field result (7). Taken liter-
ally, this model would again predict a first order phase
transition; however, the logarithmic term indicates a
change in the power-law behavior close to the critical
point. To determine this relation we invert Eq. (12), using
n	 ��3 to note that tn=n0 must be a dimensionless
function of the variable �4n0=a. In the limit n0�4 � a,
we may write, using the upper result in Eq. (17),

n0 
 	~nn �
3

2
nt ’ n0

	
1


32a

3kc�
2 ln

�
16�n0a

k2c

�

; (18)

which is the first term in an expansion of the scaling form

nt	 n0

�
�4n0
a

�
32a=3kc�2

; (19)

in the formal limit a=kc�2 ! 0, consistent with our ap-
proximation of U�k�. Inverting, we derive n0 	 t2�, with
2� � 1=�1
 �5=6��1=2� ’ 0:66, in excellent agreement
with the value 2� ’ 2=3 expected for this universality
class. In the other limit, n0�4 � a, this model calculation
simply approaches the mean field result, n0 	 t.

Below Tc the condensed system is superfluid, with a
superfluid mass density, �s, related to n0 by Josephson’s
sum rule [8–10],

�s � � lim
k!0

n0m
2

k2G11�k; 0�
: (20)

Using the explicit form (4) for G11�k; 0�, we have

�s � n0m
 2n0m
2 @

@k2z
��11�k� � �12�k��jk�0; (21)

for T � Tc. This result implies that precisely at Tc, the
superfluid fraction vanishes with the condensate fraction.
Above Tc, the superfluid density vanishes, as can be
directly derived by calculating the transverse current-
current correlation function [13].

Further, we immediately see from Eqs. (21) and (9) that
the superfluid fraction in the neighborhood of the ideal
gas transition has the same scaling behavior as we found
for the condensate density:

�s
mn

�
a
�
f�

�
t�
a

�
; t &

a
�
;

however, the scaling function f� is in general different
from the scaling function f. Reference [14] obtained
the scaling function for �s in the dilute limit to order
040402-3
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' � 4� d, where d � 3 is the spatial dimension. In the
mean field limit, t� a=�, the lowest order self-energies
are independent of k2, so that from Eq. (21) the superfluid
mass density coincides with n0 to order a. Thus f��x!
1� 	 x. In the critical region, however, f��x! 0� 	 x(,
where ( is the critical index for the superfluid mass
density. Josephson’s scaling relation gives ( �
2�� %) ’ 2=3 for the critical index of the superfluid
mass density, where ) ’ 2=3 is the critical exponent of
the correlation length [8]. Since our model calculation
above does not include the correct k! 0 limit, to which
�s (but not n0) is sensitive, it is therefore not suitable for
calculating �s reliably.

Let us turn to understanding the behavior of n0 and �s
in large but finite systems, of linear scale L. The con-
densate density, nL0 � n� ~nnL at Tc, is nonzero for finite L
and is found to leading order from

n � n10 � T
Z 1

0

d3k

�2��3
G�k; ��

� nL0 � T
Z 1

2�=L

d3k

�2��3
G�k; ��; (23)

where G is the infinite size Green’s function. Since at Tc,
G�k! 0� � �2mC�%=k2�%, where C is constant, and
n10 � 0, we find,

nL0 �
4C

�1
 %��2L

�
2��
L

�
%
; (24)

to leading order, neglecting a numerical factor dependent
on the particular geometry of the finite system.
Josephson’s relation should still hold inside the critical
region of finite-size systems, with the limit of zero wave
vector replaced by k! 2�=L. With this relation we have

N1=3 �s
mn

�
2

�1
 %��2n2=3
�
Tc
T0
c

2

�1
 %���3=2�2=3
; (25)

where the total particle number is given by N � nL3.
Note that both Eqs. (24) and (25) are valid independent
of the diluteness of the gas. Equation (25) agrees well
with the numerical values of Ref. [15]. Since the limit as
a! 0 of % is nonzero for an interacting Bose gas, the
formal a! 0 limit of Eq. (25) does not, however, agree
with the ideal gas value, given by the same formula but
with % � 0. Therefore, the procedure of Ref. [7], to ex-
pand the finite-size scaling results directly around the
ideal gas limit, is not completely justified; that there
was a difficulty in this method was already suggested
by the disagreement of the calculated value of Tc � T0

c
with later lattice calculations [3] which do not rely on this
assumption. Nevertheless, use of finite-size scaling raises
new strategies for explicit calculations [16].
040402-4
We thank the Aspen Center for Physics where this work
was initially conceived and finally completed. M. H. ac-
knowledges seminal discussions with David Ceperley on
the finite-size corrections. This research was supported in
part by the NASA Microgravity Research Division,
Fundamental Physics Program, and by NSF Grants
No. PHY98-00978 and No. PHY00-98353.
[1] G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and
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79, 3549 (1997).

[16] E. Mueller, G. Baym, and M. Holzmann, J. Phys. B 34,
4561 (2001).
040402-4


