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Robust Dynamical Decoupling of Quantum Systems with Bounded Controls
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We propose a general procedure for implementing dynamical decoupling of quantum systems without
requiring arbitrarily strong, impulsive control actions. This is accomplished by designing continuous
decoupling propagators according to Eulerian paths in the decoupling group for the system. Such
Eulerian decoupling schemes offer two important advantages over their impulsive counterparts: they
are able to enforce the same dynamical symmetrization but with more realistic control resources and, at
the same time, they are intrinsically tolerant against a large class of systematic implementation errors.
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decoupling using bounded-strength Hamiltonians. If G Tc 0
Dynamical decoupling provides a well-defined frame-
work for the manipulation of open quantum systems and
interacting quantum subsystems. Inspired by coherent
averaging methods in pulsed magnetic resonance spec-
troscopy [1], and cast in control-theoretic terms in [2,3],
decoupling techniques are attracting growing interest
from the quantum control and quantum information pro-
cessing (QIP) communities. In the context of reliable
QIP, decoupling is instrumental in the development of
quantum error suppression and symmetrization schemes
[3–5], with the potential for noise-tolerant universal
quantum computation on dynamically generated noise-
less subsystems [6]. Variants of the basic decoupling con-
cepts also play a role in protocols for universal quantum
simulation of both closed- [7] and open-system [8] dy-
namics, with implications for encoded simulation [9,10].
In a broader setting, applications of dynamical decou-
pling to problems that range from suppressing magnetic
state decoherence [11] to inhibiting the decay of unstable
states [12] or reducing heating effects in linear ion traps
[13] have been recently envisaged.

The design of dynamical decoupling schemes has es-
sentially relied so far on the ability to enforce sequences
of arbitrarily strong, instantaneous control pulses. That is,
it required the ability to impulsively apply a set of control
Hamiltonians with unbounded strength [the ‘‘bang-
bang’’ (b.b.) assumption [2] ]. While providing a conven-
ient starting point, this view suffers from being extremely
unrealistic for implementation. In a physical control
scenario, additional disadvantages of b.b. decoupling in-
clude the difficulty of simultaneously describing the evo-
lution under the natural (drift) Hamiltonian and the
control terms, as well as the poor spectral selectivity of
b.b. pulses, with substantial off-resonance effects. Finally,
although compensation techniques based on composite
rotations exist for stabilizing control pulses against op-
erational imperfections [14], they are hard to reconcile
with the b.b. framework, which does not easily lend itself
to incorporating robustness features.

In this Letter, we overcome the shortcomings of the b.b.
formulation by showing how to implement dynamical
0031-9007=03=90(3)=037901(4)$20.00 
is the discrete group specifying the desired b.b. decoupler,
the key idea is to constrain the motion of the control
propagator during each cycle along a path that interpo-
lates between the elements of G. Under mild assumptions
on the control Hamiltonians, a decoupling prescription
inducing the same symmetry structure as in the b.b. limit
can be constructed by exploiting Eulerian cycles on a
Cayley graph of G. In addition to significantly weakening
the relevant implementation requirements, Eulerian de-
coupling turns out to be largely insensitive to control
faults, opening the way to the robust dynamical genera-
tion of noise-protected subsystems.

Decoupling setting.—Let the target system S be de-
fined on a finite-dimensional state space H S, and let
End�H S� be the corresponding operator algebra. Thus,
H S ’ Cd, End�H S� ’ Matd�C� for some d, with d � 2n

for an n-qubit system. S may be coupled to an uncontrol-
lable environment E, whereby the evolution on the joint
state space H S �H E is ruled by a total drift
Hamiltonian H0 � HS � 1E � 1S �HE �

P
� S� � E�

for traceless noise generators S� 2 End�H S� [3]. A de-
coupling problem is concerned with characterizing the
effective evolutions that can be generated fromH0 via the
application of a control field Hc�t� � 1E acting on S alone
[3]. Let Uc�t� � T expf	i

R
t
0 dt

0Hc�t0�g denote the control
propagator, with 	h � 1. In a frame that removes the
control field, the dynamics is governed by a time-depen-
dent Hamiltonian ~HH�t� � Uy

c �t�H0Uc�t�, and the overall
evolution in the Schrödinger picture results from the net
propagator

U�t� � Uc�t�T exp

�
	i

Z t

0
dt0 ~HH�t0�

�
: (1)

Assuming that the control action is cyclic, Uc�t� Tc� �
Uc�t� for some cycle time Tc > 0 and for all t, the strobo-
scopic dynamics U�tM � MTc�, M 2 N, can be identified
with the effective evolution induced by ~HH�t� in (1). First-
order decoupling aims at generating the desired evolution
to lowest order in Tc, U�tM� � exp�	iH �0�tM�, where

H �0� �
1 Z Tc

dt0Uy
c �t0�H0Uc�t

0�: (2)
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While higher-order corrections can be systematically
evaluated, the approximation (2) tends to become exact
as the fast control limit Tc ! 0 is approached [1,3,5].

In the simplest b.b. decoupling setting, the time average
in (2) maps directly into a group-theoretical average. Let
G be a discrete group of order jGj > 1, G � fgjg, j �
0; . . . ; jGj 	 1, acting on H S via a faithful, unitary,
projective representation�,��G� � U�H S�. Let images
of abstract quantities under � be denoted as ��gj� � ĝgj,
and so forth [15]. Then b.b. decoupling according to G is
implemented by specifying Uc�t� over each of the jGj
equal subintervals defining a control cycle [3]:

Uc��‘	 1��t� s� � ĝg‘	1; s 2 �0;�t�; (3)

with Tc � jGj�t for �t > 0, and ‘ � 1; . . . ; jGj. The
resulting control action corresponds to extracting the
G-invariant component of H0, H �0� � �ĜG �H0�, where

�ĜG �X� �
1

jGj

X
gj2G

ĝgyj Xĝgj; X 2 End�H S�; (4)

is the projector onto the commutant dCGCG 0 of dCGCG in
End�H S� [3,4]. Thus, Uc�t� jumps from ĝg‘	1 to ĝg‘ �
�ĝg‘ĝg

y
‘	1�ĝg‘	1 through the application of an arbitrarily

strong, instantaneous control kick at the ‘th end point
t‘ � ‘�t, realizing the b.b. pulse p̂p‘ � ĝg‘ĝg

y
‘	1 [5].

Eulerian dynamical decoupling.—We seek a way for
smoothly steering Uc�t� from ĝg‘	1 to ĝg‘ by a control
action distributed along the whole ‘th subinterval. Let
� � f��g, � � 1; . . . ; j�j, be a generating set for G. The
Cayley graph G�G;�� of G with respect to � is the
directed multigraph whose edges are colored with
the generators [16], where vertex g‘	1 is joined to vertex
g‘ by an edge of color � if and only if g‘g	1

‘	1 � ��, i.e.,
g‘ � ��g‘	1. Physically, imagine that we have the ability
to implement each generator �̂��, by the application of
control Hamiltonians h��t� over �t,

�̂�� � T exp

�
	i

Z �t

0
dt0h��t0�

�
; � � 1; . . . ; j�j: (5)

The choice of h��t� is not unique, allowing for imple-
mentation flexibility. Once a choice is made, the control
action is determined by assigning a cycle time and a rule
for switching the Hamiltonians h��t� during the cycle
subintervals. We show how a useful rule results from
sequentially implementing generators so that they follow
a Eulerian cycle on G�G;��. A Eulerian cycle is defined
as a cycle that uses each edge exactly once [16]. Because a
Cayley graph is regular, it always possesses Eulerian
cycles, having length L � jGjj�j [16].

Let a Eulerian cycle beginning at the identity g0 of G
be given by the sequence of edge colors used, P E �
�p1; p2; . . . ; pL�, with p‘ � �� for some �, for every ‘.
Note that each vertex has exactly one departing edge of
each color, so that P E determines a well-defined path. We
define Eulerian decoupling according to G by letting Tc �
L�t and by assigning Uc�t� as follows:
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Uc��‘	 1��t� s� � u‘�s�Uc��‘	 1��t� ; (6)

where s 2 �0;�t�, and u‘�s� � T expf	i
R
s
0 dt

0h‘�t
0�g,

u‘��t� � p̂p‘, ‘ � 1; . . . ; L. This decoupling prescription
means that during the ‘th subinterval one chooses as a
control Hamiltonian the one that implements the genera-
tor �̂��, with �� coloring the edge p‘ in P E. The effective
HamiltonianH �0� is computed by inserting (6) in (2). The
L terms of the time average can be partitioned into j�j
families, each corresponding to a fixed generator ��.
Because P E contains exactly one ��-colored edge ending
at any given vertex gj, each family effects a sum over the
group elements as in (4). The final result can be expressed
as H �0� � QĜG �H0�, where

QĜG �X� � �ĜG �F�̂��X��; X 2 End�H S�; (7)

and the map F�̂� implements an average over both the
group generators and the control subinterval:

F�̂��X� �
1

j�j

Xj�j
��1

1

�t

Z �t

0
ds uy��s�Xu��s�: (8)

Thanks to the way �ĜG enters (7), QĜG �X� 2
dCGCG 0 for an

arbitrary input X. This property will be repeatedly used
in the following. The link between Eulerian decoupling
and G symmetrization is established upon enforcing some
additional compatibility between �ĜG and F�̂� .

Theorem.—Let X be any (time-independent) operator
on H S, and let QĜG be defined as above. If the controls

are chosen in the decoupling group algebra, h‘�t� 2 dCGCG
for all t 2 �0;�t� and for all ‘ � 1; . . . ; L, then

QĜG �X� � �ĜG �X�; X 2 End�H S�:

Proof.—The assumption on the controls implies that

u��s� 2 dCGCG 8�, 8s 2 �0;�t�. Thus, F�̂��Y� � Y for

every (time-independent) Y 2 dCGCG 0. Now let X 2
End�H S� and calculate Q2

ĜG
�X� � �ĜG �QĜG �X�� �

�ĜG �F�̂��X�� � QĜG �X�. Thus,QĜG is a projector. Because

RangeQĜG � dCGCG 0, QĜG � �ĜG iff QĜG has identity ac-

tion on dCGCG 0. Let Y 2 dCGCG 0; then QĜG �Y� � �ĜG �F�̂��Y�� �
�ĜG �Y�. �

The b.b. limit is formally recovered by letting F�̂� be the
identity map. In the Eulerian approach, at the expense of
lengthening the control cycle by a factor of j�j, the same
G symmetrization can be attained using bounded con-
trols. The maximum strengths achievable in implement-
ing the generators (5) directly affect the minimum
attainable Tc and, therefore, the accuracy of the averaging
[3]. While the overhead j�j depends on the specific group,
it is worth noting that, similar to �ĜG [4], QĜG satisfies the

property that QĜG �X� � QdG=G0G=G0
�X� whenever G0 is a

normal subgroup of G and X 2 dCG0CG0
0 [17]. Thus, if the
037901-2



P H Y S I C A L R E V I E W L E T T E R S week ending
24 JANUARY 2003VOLUME 90, NUMBER 3
dynamics is already G0 invariant, Eulerian decoupling
according to G can be accomplished by using a Cayley
graph of the smaller quotient group G=G0.

Robustness analysis.—The fact that the control actions
are distributed along finite time intervals translates into
major gains in terms of resilience of Eulerian schemes
against operational imperfections. Imagine that system-
atic implementation errors result in a faulty control
Hamiltonian H0

c�t�, and partition H0
c�t� into

H0
c�t� � Hc�t� � �Hc�t�; (9)

such that Hc�t� 2 dCGCG is the intended control
Hamiltonian, and �Hc�t� is the error component. Now
work in the same frame used earlier, which removes only
the ideal control part from the effective Hamiltonian.
Because H0 �H0

c�t� � �H0 ��Hc�t�� �Hc�t�, this maps
the evolution under H0 with the faulty control H0

c�t� into
the evolution under H0 ��Hc�t� with the ideal control.
Thus, the new effective dynamics may be obtained by
replacing H0 with H0 ��Hc�t� in (2).

Suppose that the faults are properly correlated with the
underlying path, meaning that every time a given gen-
erator �̂�� is implemented, the same imperfection
occurs at equivalent temporal locations within the sub-
interval, regardless of the position of �� along P E. Then
�Hc��‘	 1��t� s� � �h��s�, � being the color of the
edge that P E uses during the ‘th subinterval. By a calcu-
lation similar to the ideal case, QĜG is modified as fol-
lows:

Q0

ĜG
�X� � �ĜG �X� �QĜG ��Hc�; (10)

where QĜG ��Hc� can be computed as in (7) and (8), but

with the operator X in the integral replaced by one that
depends on s and �. Thus, QĜG ��Hc� is a functional of the

fault history over �0;�t� and characterizes the residual
control errors experienced by the system. Notably,
two useful features emerge: without extra assumptions,

any residual control error belongs to dCGCG 0. If, in

addition, �Hc�t� is itself [asHc�t�] in dCGCG , then all control
effects remain in dCGCG , and the residual control errors

belong to the so-called center ZcCGCG
� dCGCG \ dCGCG 0.

The effects of QĜG ��Hc� may still adversely impact the

system. However, they can be compensated for by encod-
ings in appropriate subsystems [6]. Let J 2 J label the

irreducible components of dCGCG . Then H S can be repre-
sented as

H S ’ �JH J ’ �JCJ �DJ ’ �JC
nJ � CdJ ; (11)

with nJ; dJ 2 N,
P
J nJdJ � d, and the action of the

decoupling group algebra and its commutant given

by dCGCG ’ �J1nJ �MatdJ �C�, dCGCG 0 ’ �JMatnJ �C� � 1dJ ,
respectively. Because both �ĜG �S�� and QĜG ��Hc� are

in dCGCG 0, DJ subsystems are noiseless and their dynamical
037901-3
generation robust regardless of whether �Hc�t� belongs

to dCGCG or not. This applies, in particular, if G acts irre-
ducibly on H S, in which case a robust implementation of
maximal decoupling is achievable by averaging over a
nice error basis on Cd [3]. In fact, encoding into DJ
subsystems may be valuable even in situations where the

assumption that the controls are in dCGCG cannot be met:
as QĜG �S�� 2

dCGCG 0, DJ subsystems remain unaffected by

the noise. Note that for such subsystems, both the imple-
mentation of the decoupling scheme and the execution of
encoded control operations are to be effected through fast
modulation of Hamiltonians along the control cycle [5,6].

Whenever QĜG ��Hc� originates from faults in dCGCG,

additional options are viable. If the representation � is
primary, i.e., ZcCGCG

� C1, then any systematic error is

effectively eliminated, and no encoding is necessary as
long as noise suppression is ensured, that is, �ĜG �S�� � 0

for all �. If � is not primary, then elements in the center
are diagonal over each irreducible component. Thus, en-
codings into either a H J subspace or a CJ subsystem are
insensitive to the control faults and protected against the
noise generators if �ĜG �S�� 2 ZcCGCG

as well. In practice,

choosing a CJ subsystem may be especially appealing,
because not only is universal encoded control achievable
by less-demanding, slow application of Hamiltonians

in dCGCG 0 [5], but added robustness against arbitrary control

errors in dCGCG is automatically provided [6]. Next, we
outline some applications relevant to QIP.

Example 1: Eulerian Carr-Purcell decoupling on a
qubit.—Consider a single decohering qubit, fS�g � f"zg
[2]. The decoupling group G � Z2 � f0; 1g is represented

in U�C2� as ĜG � f1; "xg. There is one generator, �1 � 1;
hence L � 2 with no overhead with respect to the
b.b. case. Let ux�s� � T expf	i

R
s
0 dt

0hx�t0�g for any

Hamiltonian hx�t� 2 dCGCG realizing �̂�1 � "x � ux��t�.
On G�G;�� choose P E � ��1; �1�. Then Eulerian decou-
pling is accomplished by letting Uc�t� � ux�t�, for t 2
�0;�t�, and Uc�t� � ux�s�"x for t 2 ��t;�t� s�, s 2
�0;�t�. By explicit calculation of QĜG ��Hc�, one
sees that systematic errors along "y; "z produce no effect.
Elimination of residual control errors in ZcCGCG

requires
using the full Pauli group.

Example 2: Eulerian Pauli decoupling on qubits.—Let
ĜG � f1; X; Y; Zg be the Pauli error basis for a qubit, with
X � "x, Z � "z, and Y � XZ. This corresponds to
G � Z2 �Z2, projectively represented in U�C2�. G has
two generators, e.g., �1 � �0; 1�, �2 � �1; 0�, realized as
�̂�1 � X, �̂�2 � Z, respectively. A Eulerian path on
G�G;�� is P E � ��1; �2; �1; �2; �2; �1; �2; �1�, of length
L � 8. The assumption that both h� and �h�, � � 1; 2,

are in dCGCG is automatically satisfied, as dCGCG � Mat2�C�.
Then (6) results into a robust implementation of maxi-
mal averaging, �ĜG �"u� � 0, u � x; y; z. For n qubits,
037901-3
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G � Zd �Zd, with d � 2n. Thus, jGj � 4n and since
two generators are needed for each qubit, L � n22n�1,
causing the procedure to be (as in the b.b. limit [3])
inefficient.

Example 3: Eulerian collective spin-flip decoupling.—
For n qubits, let G � Z2 �Z2 act via the n-fold tensor
power representation in U��C2��n�, which is projective
for n odd and regular for n even. For any n, ĜG �

f1; X; Y; Zg, where X � �nk�1"
�k�
x , Z � �nk�1"

�k�
z , and Y �

XZ. Decoupling according to G averages out arbitrary
linear noise, �ĜG �S�� � 0, S� 2 spanf"�k�

u g [5]. For
Eulerian implementation, the same path of Example 2
may be used, under the appropriate realization of
the collective generators �̂�1 � X, �̂�2 � Z. Ensuring
G symmetrization requires that the control

Hamiltonians h1;2�t� 2 dCGCG . Because both dCGCG 0 and ZcCGCG

are nontrivial, residual control errors may arise due

to QĜG ��Hc�. The situation is simpler for n even, as dCGCG

is Abelian hence supporting four �n	 2�-dimensional
irreducible subspaces H J. Besides being noiseless in
the decoupling limit and insensitive to arbitrary control

errors in dCGCG , encoding into a H J subspace is further
motivated by the possibility to achieve encoded univer-
sality via slow application of two-body Hamiltonians

in dCGCG 0 [6]. For n odd, both CJ and DJ factors may occur.
Leaving aside details here, we note that DJ subsystems
may be useful if implementing �̂�1; �̂�2 via Hamiltonians

in dCGCG is difficult in practice.
Example 4: Eulerian symmetric decoupling.—Let G �

Sn be the symmetric group of order n, acting on H S ’
�C2��n via ĝgj �nk�1 j ki � �nk�1j gj�k�i, gj 2 Sn. In par-
ticular, the action implementing a transposition �k	 1 k�,
k 2 f1; . . . ; ng, effects an exchange gate between qubits
k	 1; k, denoted by SWAPk	1;k. Symmetric decoupling
enables one, in principle, to engineer collective error
models on S starting from arbitrary linear interactions
between S and E [4,6]. A minimal generating set for Sn is
given by �1 � �1; 2�, �2 � �1; 2; . . . ; n�, i.e., an adjacent

transposition and the cyclic shift, respectively. dCSnCSn con-
tains the Heisenberg couplings h�k; l� � ~""k � ~""l. In fact,

every operator in dCSnCSn can be realized by applying
Heisenberg Hamiltonians [18]. Focus, for instance,
on S3 symmetrization, which may be relevant for induc-
ing collective decoherence on blocks of three qubits
[19]. Then �̂�1 � SWAP1;2 and �̂�2 � SWAP1;2SWAP2;3,
with L � 12. Because exp�	i*h�k; l�=4� � SWAPk;l, �̂�1

can be implemented by choosing h1 � a1h�1; 2�, with
strength a1 � *=4�t, while �̂�2 can be realized by a
piecewise-constant Hamiltonian h2�t� � a2h�2; 3� for
t 2 �0;�t=2�, h2�t� � a2h�1; 2� for t 2 ��t=2;�t�, a2 �
*=2�t. A Eulerian path on G�S3;�� is P E �
��2; �2; �2; �1; �2; �1; �1; �2; �1; �1; �2; �1�. Eulerian de-
coupling (6) then allows for a robust dynamical genera-
tion of the smallest nontrivial noiseless subsystem
037901-4
[20,21], supported by a factor DJ ’ C2 carrying the
two-dimensional irreducible component J � �2 1� of S3.

Conclusion.—We developed an approach to dynamical
decoupling that combines the group-theoretical essence
of the b.b. setting with graph-theoretical control design
according to Eulerian cycles. Besides allowing for con-
siderable leeway in the physical implementation of the
basic control generators, Eulerian decoupling eliminates
the need for unfeasible b.b. pulses and naturally incorpo-
rates robustness against realistic control faults. While
relaxing the timing constraints of the required controls
clearly emerges as the main remaining challenge in de-
coupling design, we believe that our results constitute a
significant advance toward constructing practical decou-
pling schemes and may motivate novel approaches to
robust control and simulation of quantum systems.
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