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We numerically investigate Josephson vortex flow states in layered high-T,. superconductors moti-
vated by a recent experimental observation for accurate periodic magnetic field dependences of the
Josephson vortex flow resistance over a wide range of magnetic field (0.5-4.0 T). We confirm in our
mesoscale simulations that dynamical matching of Josephson vortex lattice with sample edge is
responsible for the periodic dependence. The present simulations reveal that the Josephson vortex
lattice flow speed is particularly suppressed when the moment of vortex entry matches that of vortex
escape. Thus, the possible matching situations are taken into account and the observed periodicity is

successfully explained.
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Recently, elastic and plastic motions of superconduct-
ing vortices in type II superconductors have been inten-
sively investigated under the presence of the periodic [1]
and nonperiodic potentials [2] quenched on supercon-
ducting substrates. Since the moving vortices collectively
interact with those potentials, many rich dynamical
phases are expected [1,2]. Especially, the periodic pin-
ning potential gives rise to drastic dynamical matching
effects [1] which offer a new kind of superconducting
devices. In this Letter, we consider a novel type of dy-
namical matching effect in Josephson vortex flow states
in layered high-T, superconductors. The matching is an
intrinsic one with sample edges without any artificial
arrangements for pinning sites.

The highly anisotropic layered high-T,. superconduc-
tors represented by Bi, Sr,CaCu, g (Bi-2212) are regarded
as intrinsic Josepshon stacked array systems [3] in which
the layer parallel magnetic field penetrates into the junc-
tion area as Josephson vortex [4]. In Josephson vortex
dynamics there are some peculiar points [5] in contrast to
Abrikosov and pancake vortices. For a driving force ex-
erted on the ¢ axis, the so-called intrinsic pinning
strongly prevents the motion along the c¢ axis [6], while
the sliding motion along the ab plane is easily driven
under the presence of the c-axis transport current [7].
Moreover, the core pinning mechanism is useless since
the Josephson vortex is coreless [4]. Thus, the Josephson
vortex is believed to be almost transparent on various
quenched potentials under the c-axis parallel current. On
the other hand, we suggest that sample edges should
specifically have an important role as barriers for
Josephson vortex motions. This is because the vortex
current distribution remarkably changes only at moments
of its entry and escape at sample edges. Of course, such
edge effects should become not effective with increasing
the sample dimension because these are screened by bulk
properties. Thus, we study dynamical matching of the
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PACS numbers: 74.50.+1, 74.25.Qt, 74.78.Fk, 74.78.Na

Josephson vortex lattice with the sample edges in meso-
scale systems.

Very recently, a strikingly regular periodic dependence
of Josephson vortex flow resistance on the layer parallel
magnetic field has been reported in mesoscale layered
high-T, superconducting Bi-2212 sample [8]. The peri-
odic dependence can be very distinctly observed over a
wide range of the field (0.5-4.0 T), and its periodicity is
not dependent on the magnetic field at all. The measured
periodicity H), is given by a relation 2;’3—"0 where ¢, L,
and D are the flux quanta, the sample width perpendicular
to the layer parallel field, and the layer periodicity along
the ¢ axis, respectively. Moreover, it is now known that
there are some experimental conditions required for the
clear detection of the regularity: (i) The upper limit of
the applied c-axis transport current is about 0.1, and the
periodic structures become unclear with increasing the
current; (ii) the sample dimension is limited within L <
30 um. In this Letter, we reproduce these experimental
results by performing realistic numerical simulations and
consequently clarify that the periodic structure can be
ascribed to the matching of the Josephson vortex lattice
with the sample edges. Moreover, we connect the result
with a static Fraunhofer pattern and suggest possible
device applications.

Although there have been some arguments about lattice
configurations of static Josephson vortices in Bi-2212 [9],
it is reasonable to expect flow states of the densely packed
triangular lattice to be steady states under the relatively
high field (~ 7T) and the tiny c-axis transport current.
This assumption allows us to considerably reduce calcu-
lation efforts since the calculation in two successive
stacked junctions can represent the total system dynam-
ics by the application of the periodic boundary condi-
tion on the c-axis direction as schematically seen in
Fig. 1(I). The equation employed in numerical simula-
tions is given as
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where @1 (= 0041(0) = 0,(0) — 2 [y "7 dzA.(z, )] s
the gauge invariant phase difference, A stands for a
difference as AP fo 10 = feioert + foeo1 = 2ferre
A,p the penetration depth in the ab plane, and B is related
with the McCumber parameter as 8 = 1//B,. [10,11].
The time and space in Eq. (1) is rescaled as ¢’ = w1,
where w,, is the Josephson plasma frequency and x’ =
1/A.x where A, is the c-axis penetration depth. This
equation is derived from the Maxwell equation without
the displacement current and the Josephson relations for
time and space. The exclusion of the displacement current
does not give propagating plasma waves. In the notable
current range the flux flow motions do not resonate with
the plasma waves due to much slower flow speed than that
of the propagating plasma wave. On the other hand, in the
resonant region, the high speed flux motion smears the
edge effects. Thus, the edge effect and the plasma reso-
nance do not work cooperatively. In the numerical simu-
lation of Eq. (1), the current and the magnetic field are
applied by the boundary condition of Eq. (1) at both
sample edges as 6¢€+1,€/8xledge = H, = 0.5i,L, where
H,, i, and L are the applied magnetic field, the applied
current, and the sample size perpendicular to the mag-
netic field, respectively [11], and +(—) indicates the
condition at the right (left) edge.

Let us show simulation results. Figure 1(II) presents the
magnetic field dependence of the voltage measured for
three c-axis constant current values. These results clearly
indicate that the flux flow voltage periodically oscillates
over a wide range of the magnetic field. Moreover, if the
applied current is reduced, the periodic structures are
found to become more remarkable especially in the low
field range. These behaviors are consistent with experi-
mental results although our oscillation amplitudes are
relatively smaller than those of experimental results due
to elimination of the in-plane dissipation which may
amplify the oscillation [12].

The sample size effect on the oscillating behavior of
the flux flow voltage is shown in Fig. 2(I), where simula-
tion results for three sizes are displayed. From Fig. 2(I) it
is clearly found that the periodicity decreases and the
periodic structure becomes unclear with increasing the
size. These tendencies are also consistent with the experi-
ment. Furthermore, the size dependence of the perio-
dicity H,, obtained from both the experiments [8] and
the simulations lie on the expected line expressed by the
relation H,, = 2‘2—(}), as seen in Fig. 2(II). Thus, it is found
that the present simulations successfully reproduce the
experimental results.

Now, let us clarify an origin of the periodic depen-
dence on the magnetic field. At first, we examine whether
the edge barrier works effectively in the simulations. The
local voltage measurements as shown in Fig. 3(I) can be
easily performed in this numerical simulation in contrast
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to difficulties in experiments. The time evolutions of
three local voltages at the left edge, the right edge, and
the center site are measured as indicated in Fig. 3(I) for a
comparison between vortex dynamics at the edges and the
center region. The figures (a), (b), and (c) in Fig. 3(II) are
the time developments of these local voltages, respec-
tively. At the left edge vortices exit while these penetrate
at the right edge. The sharp peak structures are found in
time developments of the all local voltages [Fig. 3(IT)(a—
c)]. These peaks arise from vortex centers passing
through the measuring points because the local voltage
is given as Vi o(x, 1) = — % VL0, @ei1e(x, 1), where vy
is the vortex velocity, and the spatial derivative
9, ¢¢+1¢(x 1) is sharply modulated in the vortex center
[4]. From a comparison between V,;(f), V,x(f) at both
edges and V, (1) at the center, it is found that the voltage
peak amplitudes at both edges are about 2 times larger
than that at the center site. This difference can be under-
stood as follows. In both edges, suppose that local barrier
potentials exist as schematically shown in Fig. 3(III).
Once a vortex reaches the top of the potential, the vortex
speeds up in a downward direction. Thus, it is found that
effective barriers on the vortex dynamics actually exist at
both edges.

Next, let us investigate how the edge barrier causes the
periodic dependence of the flow resistance. We measure
time developments of three local voltages V,; (2), Var(2),

(D

U

,
nid
niy

Al d

15000 20000 25000
Magnetic Field(Oe)

V,.,.(x¢,» /2mcLy)
a1

0
10000

FIG. 1 (color online). (a) The schematic figure for the simu-
lated region. The periodic boundary condition along the c- axis
is imposed. The arrows and the dashed lines schematically
depict the image of the periodic boundary condition. (b) The
simulation results of the magnetic field dependences of dc
voltage measured in two stacked junctions V., for three
different c-axis currents. The sample dimension L is 7.5 pum.
Ly means the mesh number along the ab plane in the simula-
tion (Ly = 200).
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FIG. 2 (color online). The sample size effect on the magnetic
field dependence of the flux flow voltage for a current j/j,. =
0.038. (I) The magnetic field dependences of the flux flow
voltage measured in two stacked junctions for three size L =
7.5, 15.0, and 22.5 um. (II) The comparison of the periodicity
H , between the experiment [8] and the simulation in different

p

sample sizes. The straight line indicates the relation H, = 2(2_00

and V,(¢) for three points (a), (b), and (c) in the magnetic
field dependence of the flux flow voltage given in Fig. 4(I).
Figures 4(a)—4(c) show the time developments of these
local voltages in the three points (a), (b), and (c), respec-
tively. In these figures [Figs. 4(a)—4(c)], the left panel
compares the time development of the local voltage
V,. (f) with that of V,x(z), while the center panel com-
pares V5, (f) with V,z(). In the minimum point (a) as seen
in Fig. 4(I), it is found from the left panel of Fig. 4(a) that
the moment of the vortex entry completely coincides with
that of the escape in the same upside junction while the
entry and the escape for the upside and the downside
junction occur in an alternating manner as seen in the
center panel of Fig. 4(a). Thus, the moment of the dy-
namical matching of the Josephson vortex lattice with the
edges in the minimum point (a) is schematically dis-
played in the right panel of Fig. 4(a). In the next mini-
mum point (c), it is found that the moment of the vortex
escape in the upside junction coincides with that of the
entry in the downside junction from the center panel in
Fig. 4(c), while those for the same upside junction do not
coincide as seen in the left panel in Fig. 4(c). The match-
ing moment in the minimum point (c) is also schemati-
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FIG. 3. (I) The schematic view for the local voltage measure-
ments performed in the simulation. (II) The time evolutions of
the local voltages, (a) V,; (¢), (b) Vo (2), and (¢) V,x(f) whose
measuring positions are indicated in (I). (III) The schematic
figure for the free energy potential in the Josephson vortex flow
state under the presence of the edge barrier potential.

cally shown in the right panel in Fig. 4(c). On the other
hand, at the maximum point (b) it is found from Fig. 4(b)
that such matching at edges is never observed. Thus, these
results reveal that the vortex moving velocities show the
minimum at the magnetic field in which the vortex entry
and escape occur at the same time. Let us explain why the
matching reduces the vortex velocities. In such matching
conditions, two vortices per two junctions simultaneously
feel the edge barrier potential as seen in the right panels
of Figs. 4(a) and 4(c), while in nonmatching conditions
only a vortex per two junctions receives the potential.
Thus, it is found that the vortex lattice motion suffers
more enhanced friction in the matching conditions. In
fact, the vortex velocity difference between the minimum
and the maximum points can be checked by counting the
number of peaks per the same time width for the match-
ing cases (a) and (c) and the nonmatching case (b). In
addition, we can derive the magnetic field periodicity H,
according to the schematic panels of Figs. 4(a) and 4(c) as
follows: When the state reaches from (a) to (c) with
increasing the magnetic field the penetration of a half of
vortex per each junction is required. Consequently, the
periodicity is given by H,, = 2"2—‘}) . We note that this result
is characteristic to the triangular flux lattice configura-
tion appearing in stacked junction systems. On the other
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FIG. 4 (color online). The comparisons among the time de-
velopments of the local voltages at the three edges (see the
upper right panel) for the two minimum points (a),(c) and the
one maximum point (b) in (I) the magnetic field dependence of
the flux flow voltage. In (a)—(c), the left panel gives a compari-
son between V,; (¢) and V,z(2), the center panel contrasts Vs (1)
with Vix(¢), and the right panel schematically depicts the
corresponding matching moment.

hand, the matching periodicity in the single junction is
given by H, = ¢o/L(D + 2A;), where A, is London
penetration depth [13]. Furthermore, we note that there
is a connection between the oscillation in the dynamical
case and the so-called Fraunhofer pattern in the static
case without the applied current. In Fig. 4(I), J™*(B) =
21> [Fdxsinggy ¢(x)], where N is the number of the
stacked layers, is given by the dashed line [14]. From a
comparison between the magnetic field dependence of the
flow voltage and J™**(B), it is found that the oscillation
minimum almost coincides with the maximum point in
JMx(B). This result just reflects that the amount of the
supercurrent supply in the superconducting (static) state
is closely connected with the (edge) pinning strength on
the vortex lattice flow.

In conclusion, the Josephson vortex strongly feels the
sample edge barrier because the current core shape
sharply changes at the moment of the entry and the
escape. Therefore, the Josephson vortex lattice shows
the considerable matching with sample edges and con-
sequently gives the accurate periodic oscillation of the
flow resistance over the wide range of the magnetic field.
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This remarkable character is applicable to a flux SQUID
meter under the high magnetic field and a voltage ampli-
fier with the field control [15]. In the former case the local
field variation under the strong background field is easily
detected by monitoring the voltage modulation [15],
while the latter case may be used as a system embedded
in magnetic field of about 1 T produced by permanent
magnets [15]. Moreover, these systems can work up to
fairly high temperature compared to those using conven-
tional Josephson junctions [8]. Thus, we propose that the
Josephson vortex flow states in the mesoscale layered
high-T, superconductors are very promising for various
device applications.
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