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First-Principles Calculation of Vibrational Raman Spectra in Large Systems:
Signature of Small Rings in Crystalline SiO2
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We present an approach for the efficient calculation of vibrational Raman intensities in periodic
systems within density functional theory. The Raman intensities are computed from the second order
derivative of the electronic density matrix with respect to a uniform electric field. In contrast to
previous approaches, the computational effort required by our method for the evaluation of the
intensities is negligible compared to that required for the calculation of vibrational frequencies. As a
first application, we study the signature of 3- and 4-membered rings in the Raman spectra of several
polymorphs of SiO2, including a zeolite (H-ZSM-18) having 102 atoms per unit cell.
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In a Raman spectrum the peak positions are fixed by
the frequencies !� of the optical phonons with null wave

Sham (KS) eigenstates [6]. In fact, according to the well
known Hellmann-Feynman theorem,
Vibrational Raman spectroscopy [1] is one of the most
widely used optical techniques in materials science. It is a
standard method for quality control in production lines. It
is very effective in determining the occurrence of new
phases or structural changes at extreme conditions (high
pressure and temperature), where it is often preferred to
the more difficult and less readily available x-ray diffrac-
tion experiments based on synchrotron sources [2].
Moreover, it can be used in the absence of long-range
structural order as for liquid or amorphous materials
[3–5]. The theoretical determination of Raman spectra
is highly desirable, since it can be used to associate
Raman lines to specific microscopic structures.

Density functional theory (DFT) [6] can be used to
determine with high accuracy both frequencies and in-
tensities of Raman spectra.Vibrational frequencies can be
efficiently determined using first order response [7,8].
Within this approach Raman intensities (RI) calculation
is also possible, but requires a computational time sig-
nificantly larger and is not practical for large systems.
Thus, while many examples of frequency calculations
have been reported so far [7], RI were predicted from
first-principles in a very limited number of cases involv-
ing systems with a small number of atoms [9–11]. In this
Letter we show that it is possible to obtain RI in extended
solids with a computational cost negligible with respect
to that required for the frequency determination. The
efficiency of our approach will lead ab initio calculations
to become a routine instrument for the interpretation of
experimental Raman data. Our method is based on sec-
ond order response to DFT. In particular, we compute the
second order derivative of the electronic density matrix
with respect to a uniform electric field, using pseudopo-
tentials and periodic boundary conditions. As a first ap-
plication we calculate Raman spectra of several SiO2

polymorphs, including a zeolite having 102 atoms per
unit cell [12].
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vector. In nonresonant Stokes Raman spectra of har-
monic solids, the peak intensities I� can be computed
within the Placzek approximation [1] as:
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where ei (es) is the polarization of the incident (scattered)
radiation, n� � 	exp� 	h!�=kBT� 
 1�
1, T is the tempera-
ture, and
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Here Eel is the electronic energy of the system, El is the
lth Cartesian component of a uniform electric field, uk� is
the displacement of the �th atom in the kth direction, M�
is the atomic mass, andw�k� is the orthonormal vibrational
eigenmode �.

Linear response [7,8] can be used to determine !�, w�,
and also the dielectric tensor �$1 defined as �1lm � �lm 

�4�=��@2Eel=�@El@Em�, where � is the cell volume. RI
have been computed [9,10] through Eq. (1), obtaining A

$�

by finite-differences derivation of �$1 with respect to uk�.
This approach requires 36Nat linear response calcula-
tions, where Nat is the number of atoms. Thus, the scaling
of the RI calculation is the same as that of the frequency
calculation with a much larger prefactor. This has limited
the applications of this approach to small systems. RI
have also been computed from the dynamical autocorre-
lation functions of �$1 in a molecular dynamics (MD) run
[11]. This approach also copes with liquids or anharmonic
solids, but is very demanding, requiring the calculation of
�$1 at each MD step.

Alternatively, RI can be obtained knowing the second
order derivative of the DFT density matrix � �P
v j vih vj, j vi being the normalized occupied Kohn-
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where TrfOg is the trace of the operator O, and vext is the
external ionic potential (the KS self-consistent potential
is VKS � VHxc � vext, where VHxc is the sum of the
Hartree and the exchange-correlation potential). Thus,
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The @2�=�@El@Em� calculation requires six second-order
calculations, instead of the 36Nat first-order calculations
needed for the finite differentiation [10]. Because of this
better size scaling, the A

$� calculation through Eq. (3) is
much more efficient and the time for RI calculation is
negligible compared to that for !� in large systems.

The approach based on Eq. (3) has already been used in
isolated molecules [13] but never in extended systems.
Indeed, in solids the calculation of @2�=�@El@Em� is not
trivial because the position operator, required by the
electric field perturbation, is ill defined in periodic
boundary conditions. Because of this, although a formal-
ism to calculate derivatives of � at any order was pro-
posed by Gonze already in 1995 [8], only very recently
were Nunes and Gonze [14] able to include perturbations
due to macroscopic electric fields. To do that, they use the
polarization-Berry phase formalism [15], arguing that
this concept remains valid in the presence of finite elec-
tric fields. This approach has been applied so far to a one-
dimensional non-self-consistent model [14]. In the
following, we give an expression for the second derivative
of � that does not require the Berry phase formalism to
cope with uniform electric fields, and we use it to com-
pute A

$� in real systems with a DFT self-consistent
Hamiltonian.

The derivative of � with respect to two generic pertur-
bation parameters � and  is
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where P � �1
 �� is the projector on the empty state
subspace, the sums over v and v0 run over the occupied
states, and j"��; �

v i are the second derivatives of the occu-
pied KS orbitals in the parallel-transport gauge [8].
According to our derivation,							P
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Here
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is the Green function operator projected on the empty
states j ci [16], 	A;B� � AB
 BA, and the first derivative
of the density matrix is
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Since @VKS=@� and @2VKS=�@�@ � depend on @�=@�,
@�=@ and @2�=�@�@ �, Eqs. (4)–(7) should be solved
self-consistently.

The advantage of the present formulation, compared to
that of Ref. [8], lies in the introduction of the commuta-
tors of Eqs. (5) and (6). Thanks to the commutators, all
the quantities needed with our formalism are well defined
in an extended insulator, even if the perturbations  or �
are the component El of a uniform electric field, i.e., if
@VKS=@� � 
erl � @VHxc=@El [17], rl being the lth
Cartesian component of the position operator r and e
the electron charge. In particular, in an insulator, the
commutators 	r; �� and 	r; @�=@ � in Eqs. (5) and (6)
are well defined, bounded operators, since the density
matrix is localized (hr00j�jr0i goes to zero exponentially
for jr00 
 r0j ! 1).

Finally, in a periodic system, the right-hand side of
Eq. (6) can be easily computed in terms of the juki i that
are the periodic parts of the Bloch wave functions j k

i i
with reciprocal-lattice vector k, using the substitutions:

h k
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where l and m are Cartesian indexes, c is an empty band
index, v and v0 are occupied band indexes, and Pk is the
projector on the empty subspace of the point k. In our
implementation, the derivative with respect to kl in the
right-hand side of Eq. (9) is computed numerically by
finite differences, using an expression independent from
the arbitrary wave-function phase, as in Refs. [14,18].

We test our approach on Si in the diamond phase, where
the Raman activity is determined by � � a@�111=@u [9],
where a � 10:20 a:u: is the lattice spacing and u the
displacement of one atom along the �1; 1; 1� direction
[19]. We compute � for various grids of k points, using
both our second order response method (�SOR) and by
finite differentiation with respect to the atomic displace-
ment (�FD), Table I. At convergence the two approaches
are completely equivalent.

As a second application, we consider tetrahedral SiO2.
In this class of materials, which includes the all-silica
zeolites, the quartz, cristobalite, tridymite, and coesite
polymorphs of SiO2, and vitreous silica (v-SiO2), each Si
atom is tetrahedrally coordinated to four O atoms and
036401-2



TABLE I. Raman activity in Si computed with our approach
(�SOR) and by finite differences (�FD). N is the number of
inequivalent k points.

N 2 10 28 60 110 182

�SOR 8.54 5.30 5.32 5.39 5.40 5.40
�FD 18.99 7.09 5.69 5.45 5.41 5.40

�FD Ref. [9] 7.10
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FIG. 1. Vibrational Raman spectra of various SiO2 poly-
morph powders. Measurements are from Refs. [22].
Theoretical frequencies are rescaled by �5%, and the spectra
are convoluted with a uniform Gaussian broadening having
4:0 cm
1 width.
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each O atom is bonded to two Si atoms. The properties of
these systems can be effectively described in terms of the
n-membered rings (n-MRs) of tetrahedra contained in
their structure [3–5]. For example, a clear correlation
between the presence of 3- and 4-MRs and the degrada-
tion of optical v-SiO2 fibers under UV radiation has been
observed [4]. In the v-SiO2 Raman spectra the two sharp
peaks at 490 cm
1 (D1 line) and 606 cm
1 (D2 line) have
been attributed to the breathing mode (BM) of the O
atoms towards the ring center of 4-MRs and 3-MRs,
respectively [3]. This attribution has been confirmed by
DFT vibrational frequency calculations [5]. The attribu-
tion would be further supported by experimental mea-
surements on well characterized crystalline polymorphs
containing 3- and 4-MRs. However, the strong Raman
peak at 520 cm
1 in coesite, a phase that contains 4-
MRs, is shifted by 30 cm
1 with respect to the D1 line in
v-SiO2, and no Raman measurement has been published
on the H-ZSM-18 zeolite, which is the only known SiO2

crystalline polymorph with 3-MRs [12]. Interestingly,
this zeolite contains 4-MRs as well.

To clarify this topic, we compute the Raman spectra of
*-quartz, coesite, *-cristobalite, and H-ZSM-18 [19,20].
In Fig. 1, we compare our results with the available
experimental spectra [22]. The vibrational frequencies
are systematically underestimated by 5% by our calcula-
tion. To simplify the comparison with the experiments, in
Figs. 1 and 2, the theoretical frequencies are multiplied by
a scaling factor of 1.05. The ability of the method in
reproducing quantitatively all the measured features is
evident.

In order to associate Raman peaks of Fig. 1 to the
small-ring BMs, we project the vibrational eigenmode
w� on the subspace generated by the BMs of a given kind
of rings, R, and on the corresponding complementary
subspace, 	RR.We use the two resulting projected vectors to
decompose A

$� so that A
$� � A

$�
R �A

$�
	RR

. Since I� is qua-
dratic in A

$� [see Eq. (1)] I� � I�R � I�	RR � I�overlap, where
I�overlap is the term bilinear in A

$�
R and A

$�
	RR

. A Raman peak
can be associated to a ring BM (i.e., the Raman activity is
solely due to the BM ) if, and only if, I�R � jI�overlapj.

The structure of H-ZSM-18 [12] contains two equiva-
lent 3-MRs and two kinds of 4-MRs which we call
4-MRs0 and 4-MRs1 [23]. In Fig. 2, we show the projected
Raman spectra of the zeolite and the coesite. In the H-
ZSM-18 spectrum, the peaks at 485 and 615 cm
1 are
very well described by the BM of 4-MRs0 and 3-MRs,
036401-3
respectively. A direct analysis of the vibrational eigen-
modes shows that both BMs are decoupled from other
modes. The frequencies of the two peaks are very close to
those of the measuredD1 andD2 lines in v-SiO2 (490 and
606 cm
1), thus confirming that these lines are due to
rings BMs [3,5]. However, the presence of small MRs in a
structure does not guarantee, in general, the occurrence
of completely decoupled BMs. This is the case of the 4-
MRs in coesite and the 4-MRs1 in the zeolite, whose BMs
exhibit a large jI�overlapj; see Fig. 2. These overlaps imply
the existence of a coupling with other modes, that, in
036401-3



400 500 600

 0  

 0.5

 1.0
H-ZSM-18
3-MRs

 615 
cm   -1

400 500 600

H-ZSM-18
4-MRs0 485 

cm   -1

 

400 500 600

 0  

 0.5

 1.0

Raman shift (cm-1)

H-ZSM-18
4-MRs1

Total

Projected

Overlap

 

400 500
Raman shift (cm-1)

Coesite
4-MRs

520
cm         -1

FIG. 2. Raman intensities projected on the breathing modes
of various rings labeled 3-MRs and 4-MRsx (see the text). For
clarity, the overlap intensity (I�overlap in the text) is shifted
vertically.
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turn, explains the 30 cm
1 difference between the 4-MRs
frequency of coesite and that of the D1 line of v-SiO2. A
comparable frequency shift from the D1 line is observed,
with opposite sign, for the 4-MRs1 BMs in the zeolite.

In conclusion, with the aim of building an instrument
for the routine interpretation of Raman spectra, we de-
veloped a method for the efficient calculation of Raman
intensity. We computed the Raman spectra of SiO2 poly-
morphs containing up to 102 atoms. We found that (i) not
all the small membered rings have decoupled breathing
modes and (ii) the H-ZSM-18 zeolite provides decoupled
breathing mode of 4- and 3-membered rings, whose fre-
quencies nicely coincide with the D1 and D2 lines of
vitreous silica. An experimental determination of the
Raman spectra of this zeolite can thus provide an experi-
mental calibration for the determination of the density of
decoupled small membered rings in vitreous silica.

Calculations were performed at IDRIS supercomputing
center. Our approach was implemented in the PWSCF

code [24].
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