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Fast Calculation of the Density of States of a Fluid by Monte Carlo Simulations
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Two related methods are proposed to calculate the density of states of a fluid from Monte Carlo
simulations. In contrast to previous approaches, which require that histograms be accumulated in a
stochastic manner, the methods proposed here rely on evaluation of the instantaneous temperature. In
the first method, the temperature is calculated from the gradient of the forces. In the second, it is
estimated from the kinetic contribution to the total energy. The validity and usefulness of the new
approaches are demonstrated by presenting results from simulations of a Lennard-Jones fluid. It is
shown that the new methods are considerably faster than previously available techniques.
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relies on a histogram of energies to dictate the rate of
convergence of a simulation. Random trial moves are

accuracy, the proposed methods are shown to be consid-
erably faster than existing algorithms. Third, unlike
Molecular simulations of complex systems, such as
proteins, polymers, or glasses, are often limited by the
rugged nature of their energy landscape. Deep energy
minima, separated by large barriers, make sampling of
configuration space particularly challenging. Over the
last decade, several simulation methods have been devel-
oped in attempts to systematically smooth out such land-
scapes. Umbrella sampling, multicanonical sampling, or
parallel tempering formalisms provide examples of such
methods [1–3].

The central element of those simulation techniques is
the density of states �. Knowledge of the density of states
would permit construction of stochastic algorithms de-
signed to visit states with uniform probability p � 1=�,
regardless of whether a particular configuration of the
system happens to correspond to an energy minimum or
to the top of an energy barrier. Unfortunately the density
of states is not known a priori; in fact, it is precisely the
function that one would like to extract from a simulation,
if it were at all possible.

Traditional multicanonical algorithms [2] provide a
rough estimate of the density of states through ‘‘weights,’’
constructed to promote or inhibit visits to particular state
points according to a running estimate of the frequency
with which they are visited. These algorithms are neces-
sarily iterative, their use often requires considerable
knowledge about the system under study and, for complex
fluids, their convergence can be difficult.

Recently, a new, powerful algorithm has been proposed
for direct calculation of the density of states from Monte
Carlo simulations [4]. This algorithm has been shown to
be particularly efficient in simulations of lattice system
[5]. However, the convergence of that algorithm deterio-
rates with the size and complexity of the simulated sys-
tem. Perhaps more seriously, as is shown in this work, it
reaches an asymptotic accuracy beyond which additional
calculations fail to improve the quality of the results.

The random-walk algorithm [4] of Wang and Landau
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accepted with probability p � min�1;��Eo�=��En��,
where Eo and En denote the potential energy of the system
before and after the move, respectively. Every time that
an energy state E is visited, a running estimate of the
density of states is updated according to ��E� � f��E�,
where f is an arbitrary convergence factor. The energy
histogram is also updated; once it becomes sufficiently
flat, a simulation ‘‘stage’’ is assumed to be complete, the
energy histogram is reset to zero, and the convergence
factor f is decreased according to some prescribed func-
tion (e.g., f �

���
f

p
). The entire process is repeated until f

is very close to 1 (the original literature recommends that
lnf attain a value of 10�9).

Two features of the above procedure must be empha-
sized. First, because the running estimate of the density
of states changes at every step of the simulation, detailed
balance is never satisfied. In practice, however, the con-
vergence factor decreases exponentially and its final value
can become so small as to render the violation of detailed
balance inconsequential. The second feature, which has
been overlooked in the literature, is more concerning: be-
cause of the decreasing convergence factor, configura-
tions generated at different stages of the simulation do
not contribute equally to the estimated density of states.
In fact, in the late stages of the simulation, the conver-
gence factor is so small that the corresponding configu-
rations make virtually no contribution to the density
of states estimate. In other words, many of the con-
figurations generated by the simulation are not utilized
effectively.

In this work, two new methods are proposed to deter-
mine the density of states of an arbitrary system. These
techniques constitute a departure from earlier algorithms
in several, important respects. First, and most impor-
tantly, a running estimate of the density of states is
determined from the instantaneous temperature of the
system, as opposed to a histogram of random visits to
distinct energy of states. Second, for a given level of
2003 The American Physical Society 035701-1
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previous techniques, the proposed methods are shown to
be capable of providing estimates of the density of states
of arbitrary accuracy.

The temperature of a system is related to its density of
states ��N;V; E� by Boltzmann’s equation [6]
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The above equation can be integrated to determine the
density of states from knowledge of the temperature:

ln��N;V; E� �
Z E

E0

1

kBT
dE: (2)

Equation (2) requires that the temperature be known as
a function of energy. In this manuscript, two completely
different schemes are proposed to do that. The first in-
volves use of the so-called configurational temperature
[7]. The second relies on knowledge of the kinetic energy
in a purposely designed statistical mechanical ensemble.

Recently, Evans et al. [7] have shown that an intrinsic
temperature can be assigned to an arbitrary configuration
of a system. This so-called ‘‘configurational temperature’’
is based entirely on configurational information and is
given by
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where Fi represents the force acting on particle i. This
configurational temperature can be particularly useful in
Monte Carlo simulations, where kinetic energy is not
explicitly involved.

In the first scheme proposed here, the temperature is
calculated as a function of energy by introducing a
configurational-temperature estimator. Four histograms
are collected during a simulation; one for the density of
states, one for the potential energy, one for the numerator
of Eq. (3), and one for its denominator.

In the early stages of the simulation, detailed balanced
is grossly violated as a result of the large value of f. The
resulting estimates of configurational temperature are
therefore incorrect. In order to avoid contamination of
late stages by the transfer of incorrect information, the
temperature accumulators can be reset at the end of the
early stages, once the density of states is calculated from
the temperature. For small enough convergence factors
(e.g. lnf < 10�5), the slight violations of detailed balance
incurred by the method become negligible, and the tem-
perature accumulators need no longer be reset at the end
of each stage.

In this proposed random-walk algorithm, the dynami-
cally modified density of states only serves to guide a
walker through configuration space. The ‘‘true,’’ thermo-
dynamic density of states is calculated from the configu-
rational temperatures accumulated in the simulation.
Because all configurations generated in the simulation
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contribute equally to the estimated configurational tem-
perature, the new algorithm eliminates the problem al-
luded to earlier, namely, that of nonuniform contributions
of different stages to �.

Most Monte Carlo simulations are conducted at con-
stant temperature, and kinetic energy is not specifically
involved. It is still possible, however, to construct a
microcanonical-ensemble Monte Carlo simulation [8] in
which a kinetic energy (and hence a temperature) is
calculated for a specific value of the total energy.

Consider a microcanonical-ensemble comprising N
particles, having volume V, and total energy E. The
probability of observing a configuration x having total
potential energy U�x� is proportional to

��x� / �E�U�x���‘�2�=2��E�U�x��; (4)

where ‘ is the total number of degrees of freedom of the
system, and � is the unit step function. Temperature can
then be estimated according to

T �

�
�E�U�=k

‘=2

	
NVE

: (5)

To evaluate the density of states from temperature, T
must be determined over a range of total energy. To do so,
a new ensemble is constructed in which the total number
of particles and the volume of the system are fixed. The
total energy of the ensemble, however, is allowed to
fluctuate in a specified range or ‘‘window.’’ To facilitate
sampling, we also require that the distribution of the total
energy be uniform over the specified energy window. This
can be achieved by introducing a weighting factor which
is inversely proportional to the density of states. In such
an ensemble, the probability to observe a configuration x
having total energy E and total potential energy U�x� is
given by

��E;x� /
�E�U�x���‘�2�=2��E�U�x��

��N;V; E�
: (6)

In the remainder of this manuscript, we refer to this
ensemble as ‘‘multimicrocanonical.’’ In the simplest im-
plementation of a simulation in this ensemble, the follow-
ing two types of moves are employed: simple trial
particle displacements, in which the coordinates of a
randomly chosen particle are altered by a small random
amount, and trial energy changes. The procedure to gen-
erate particle displacements is the same as that used in
conventional Monte Carlo simulations, except that here
the total energy of the system is conserved. A trial move
is accepted with probability

p1 � min



1;
�E�U�xn���‘�2�=2��E�U�xn��

�E�U�xo���‘�2�=2��E�U�xo��

�
: (7)

Trial energy changes are proposed by introducing a
random total energy change, uniformly distributed in
an interval ���Emax; �Emax�. The maximum change in
035701-2
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FIG. 1. Statistical errors in the density of states as a function
of convergence factor.
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energy �Emax is specified as an input parameter. Trial
energy-change moves do not alter the configuration or the
potential energy of the system. Such moves are accepted
with probability

p2 � min



1;
��N;V; Eo�

��N;V; En�

�
�En �U�x���‘�2�=2��En �U�x��

�Eo �U�x���‘�2�=2��Eo �U�x��

�
: (8)

The sought-after density of states enters the acceptance
criteria. To gradually refine a running estimate of �, we
adopt a scheme similar in spirit to that followed in multi-
canonical ensemble simulations. A kinetic energy accu-
mulator is maintained for each energy level. At the
beginning of the simulation, the density of states is ini-
tialized to be constant over the entire energy range of
interest. The density of states is only updated at the end of
each simulation stage, by integrating the temperatures
accumulated up to that point. For a simple Lennard-
Jones fluid, each simulation stage typically consists of
several hundred thousand steps. Since the density of states
remains unchanged in each stage, detailed balance is
always fulfilled and the temperature accumulators need
not be reset at the end of every stage. The simulation is
terminated when the statistical errors in the accumulated
temperature are sufficiently small.

In the remainder of this Letter, the results of the two
proposed methods are compared to those of the random-
walk algorithm introduced by Wang and Landau [4] for a
truncated-and-shifted Lennard-Jones fluid (the potential
energy is truncated at rc � 2:5�).

Our simulations are conducted in a cubic box of length
L � 8�, with N � 400 particles. The density of the sys-
tem is � � 0:78, well within the liquid regime. For the
configurational-temperature algorithm, the energy win-
dow is set to �1930 � E=� <�1580; for the multimi-
crocanonical ensemble simulation, the energy window is
�1500 � E=� <�500. In both cases, the energy window
corresponds roughly to temperatures in the range 0:85<
T� < 1:5 (i.e. above and below the critical point). In
configurational-temperature simulations, the calculations
are started with a convergence factor f � exp�0:1�. The
simulation is terminated when the convergence factor
satisfies f < exp�10�10�. After necessary transforma-
tions, the calculated configurational temperature and ‘‘ki-
netic’’ temperature are nearly indistinguishable.

To estimate the statistical errors in the estimated den-
sity of states, seven independent simulations are con-
ducted, with exactly the same code, but with different
random-number generator seeds. Figure 1 shows the sta-
tistical error of the density of states as a function of f.
The diamonds show results from the Wang and Landau
algorithm. These errors exhibit two distinct regimes. For
large f (e.g. f > 10�4), the statistical error is proportional
to

���
f

p
. In the small f regime (f < 10�6), the error curve
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levels off, and asymptotically converges to a limiting
value of approximately 0.1. Figure 1 is in direct contra-
diction with the common belief that the error in the
density of states incurred by traditional random-walk
algorithms is proportional to f. There are two reasons
behind such an asymptotic behavior: first, in the Wang-
Landau algorithm, the definition of ‘‘flatness’’ of a his-
togram is somewhat arbitrary. It is common practice to
consider a histogram to be ‘‘sufficiently flat’’ when its
minimum entry is no less than 80% of its average value.
This assumption can cause problems, because an estimate
of density of states with a minor error can result in a
sufficiently flat histogram anyway. Second, configura-
tions generated at different stages of the simulation do
not contribute equally to the histograms. The Wang and
Landau algorithm leaves the density of states essentially
unchanged once f is reduced to less than 10�6; additional
simulations with smaller f only ‘‘polish’’ the results
locally, but do little to improve the overall quality of
the data. If phase space has not been ergodically sampled
by the time f reaches about 10�6, the final result of the
simulation is likely to be inaccurate. Using a more strin-
gent criterion for flatness only alleviates the problem
partially, because the computational demands required
to complete a stage increase dramatically. Figure 1 also
shows that by increasing the flatness criterion to 90% one
can decrease the asymptotic error down to about 0.04.
However, this also increases the simulation time by a
factor of 4.

In contrast to the curve generated through the conven-
tional random-walk, the errors in the configurational-
temperature calculation steadily decrease as the
simulation proceeds. Figure 1 also shows that the statisti-
cal errors from the configurational-temperature method
proposed here are always considerably smaller than those
from the Wang and Landau technique. At the end of a
035701-3
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FIG. 2. Statistical errors in heat capacity as a function of
CPU time.
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simulation, the statistical error from a Wang-Landau
calculation is approximately five times larger than
that from configurational temperature. In other words,
thermodynamic-property calculations of comparable ac-
curacy would be much faster (approximately 25 times) in
the proposed configurational algorithm than in existing
random-walk algorithms.

Fig. 2 compares the average statistical errors in the heat
capacity calculated from a Wang-Landau algorithm, from
multimicrocanonical ensemble simulations, and from
configurational temperature, as a function of actual
CPU time. The error in the proposed two methods is
significantly smaller than that of the original Wang-
Landau algorithm. The error from multimicrocanonical
ensemble simulations is slightly smaller than that from
configurational-temperature calculations. The heat ca-
pacities (Cv=kB) at T� � 1:0 calculated from the three
methods after a day of computer time are 2:35� 0:01,
2:342� 0:004, and 2:342� 0:003, respectively. In-
creasing the flatness parameter to 90% decreases the
asymptotic error, but increases significantly the computa-
tional time required to achieve the same accuracy.

There are three main reasons behind the improved
performance of the proposed methods. First, these two
methods rely on direct configurational information to
construct the density of states, as opposed to a histogram
of stochastic visits to each distinct energy level. In other
words, more information is utilized in these methods than
in the original random- walk algorithm. Second, from the
numerical point of view, the integration of temperature to
determine a density of states eliminates much of the
statistical noise in these calculations. Finally, as men-
tioned earlier, all stages of the simulation contribute
equally to the construction of the density of states.

In summary, two new methods have been proposed to
calculate the density of states of simple fluids from Monte
Carlo simulations. These methods rely on knowledge of
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the instantaneous temperature to arrive at the density of
states. In one implementation, the temperature is deter-
mined from the gradient of the forces. In a different
implementation, the temperature is estimated from the
kinetic contribution to the total energy. Both of these
methods are considerably faster than recently proposed
‘‘random-walk’’ techniques for simulation of the density
of states. Furthermore, they permit calculation of the
density of states to arbitrary accuracy, something that
was not possible in previous algorithms.

Of the two techniques proposed here, the multimicro-
canonical ensemble formulation appears to be slightly
superior. We believe this second implementation is more
convenient in that the derivatives of the forces are not
required, and it can also be applied to discontinuous
potential energy functions or systems on a lattice, where
Eq. (3) is not applicable.

The proposed methods are general and can be easily
extended to multidimensional simulations by replacing
the temperature with appropriate derivatives of the free
energy with respect to the relevant extended variables [9].
For example, in a system having fluctuating energy and
number of particles, a two-dimensional integration would
be required over temperature and chemical potential of
the system. Further studies are under way to explore the
performance of such extensions.

The methods proposed here can also be combined with
parallel tempering formalisms. Because temperature is an
intensive quantity, it is possible to set up a global accu-
mulator for all the replicas in a parallel simulation,
thereby greatly simplifying the combination of simula-
tion results in such calculations. The details of this and
other combinations will be reported in a more extensive
manuscript.
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