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Temperature-Transformed ‘‘Minimal Coupling’’: Magnetofluid Unification
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The dynamics of a relativistic, hot charged fluid is expressed in terms of a hybrid magnetofluid field
which unifies the electromagnetic field with an appropriately defined but analogous flow field. The
unification is affected by a well-defined prescription that allows the derivation of the equations of
motion of a plasma embedded in an electromagnetic field from the field-free equations. The relationship
of this prescription with the minimal coupling prescription of particle dynamics is discussed; the
changes brought about by the plasma temperature are highlighted. A few consequences of the
unification are worked out.
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for each species (� is the species index): the continuity
equation

As stated earlier, I will use the standard, local
Maxwellian closure, which, for the relativistic plasmas,
The minimal coupling prescription, epitomized in the
substitution,

p� ! p� � qA�; mU� ! mU� � qA� (1)

reproduces the Lorentz force correctly, and is therefore
routinely used for incorporating the electromagnetic
(EM) field in particle dynamics. In Eq. (1), p��U�� and
A�, are, respectively, the particle four momentum (four-
velocity) and the electromagnetic four potential, q is the
electric charge and m is the mass of the particle.

In this Letter I examine two related questions:
(i) Does there exist an equivalent recipe (like the

minimal coupling prescription) for deriving the equations
of motion of a hot charged fluid immersed in an EM field
from the equations it obeys in the absence of the EM field?
What is the detailed nature of this prescription and how
does it reflect the effect of statistical attributes like the
temperature which are absent in particle dynamics?

(ii) Is it possible to cast the fluid velocity field in
clothing designed to fit the electromagnetic field and
does such a casting lead to a ‘‘unification’’ of the flow
field with electromagnetism? And will the new structure
be mathematically simpler and more revealing than the
standard formalism?

For this enquiry, I deal with a standard two-species
plasma (one positively and one negatively charged),
although generalization to many species is straightfor-
ward. A local Maxwellian closure will ensure that in the
ensuing description, the scalar pressure, along with the
four flux (constructed from density and three components
of the velocity) constitutes the entire set of fluid variables.
In addition to Maxwell’s equations

@	F
�	 � J�; (2)

@	F �	 � 0; (3)

the system consists of the following fluid equations valid
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@	�	
��� � 0; (4)

and the equation of motion

@	T
�	
��� � q�F

�	�	���; (5)

where F�	 � @�A	 � @	A� is the fully antisymmetric
electromagnetic field tensor related to the electric and
magnetic fields through

F0i � Ei

Fij � Bk;
i; j; k cyclic;

(6)

and F �	 � �1=2���	��F�� is its dual obtained by the
substitution F �	 � F�	�E ! B;B ! �E�. The fully
relativistic energy-momentum tensor is given by [1,2]

T�	
��� � p��	 � h�U

�
���U

	
��� (7)

where p� is the pressure, h� is the enthalpy density, and
U�

��� � f��; ��Vg 	 f��;U�g is the four-velocity of the
�th component of the fluid and � � �1� V2��1=2 is the
relativistic factor. The flux

��
��� � nR���U

�
���; (8)

where nR is a scalar measuring the density in the rest-
frame (local) of the given fluid. The current

J� �
X
�

q��
�
��� �

X
�

q�nR�U
�
��� (9)

is the input needed to couple the fluid to Maxwell’s
equations. Notice that summing over species converts
(5) into 
T �	 �

P
� T

�	
��� �

@	T
�	 � F�	J	 (10)

which, in principle, can be solved to find J	. From now
on, I will drop the species index, and much of what
follows will hold for each species.
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yields the enthalpy density [2],

h � mnR
K3�m=T�
K2�m=T�

	 mnRf�T�; (11)

where m is the rest mass of the particles constituting the
�th component of the fluid and Kn’s are modified Bessel
functions of the second kind with the argument � � m=T.
The function f�T� 	 f is a function only of the tempera-
ture. The theory being developed is fully relativistic, both
in temperature (arbitrary T=mc2 	 T=m) and in the
directed speed.

After these necessary preliminaries, I now introduce,
in complete analogy to the EM field tensor, the fully
antisymmetric second-rank ‘‘flow’’ tensor

S�	 � @�fU	 � @	fU� (12)

constructed from the kinematic �U�� and the statistical

f�T�� attributes of the fluid. Its nonzero components
[Greek (Latin) indices go from 0–3(1–3)] are

S0i � Qi; (13)

Sij � Rk; i; j; k cyclic: (14)

The three-vectors Q and R are the fluid equivalents of the
electric and the magnetic fields 
U � �V�

Q � �

�
@
@t
fU�rf�

�
; (15)

R � r fU: (16)

The reason for introducing the weight factorf in the
definitions will become clear later. By construction Q
and R satisfy the equivalent of the homogeneous
Maxwell’s equations [Eq. (3)] ) r � B � 0; @B=@t�
r E � 0�,

r �R � 0 (17)

@R
@t

� rQ � 0; (18)

which could be expressed explicitly covariantly

@	�
�	 � 0; (19)

where ��	 � �1=2���	��S�� is the dual of S�	. Until
now I have just given a set of self-consistent definitions.
Now I will work on the equation of motion (5) to express it
in terms of S�	.

Using Eq. (11) for h, we could spell out Eq. (5) as

@	p�mnRU
�@�fU

	 � qnRF
	�U�; (20)

where we have invoked @��� � @�nRU� � 0.
Contracting (12) with U�, we obtain

U�@�fU
	 � U�S

�	 � @	f: (21)

Substituting (21) into (20) and combining terms contain-
035001-2
ing p and f,

T@	$ � qU�M
	� (22)

with

M	� � F	� � �m=q�S	� (23)

representing the effective field tensor combining the elec-
tromagnetic and fluid ‘‘forces.’’ The entropy-like quantity
$ � ‘n
�p=K2��m=T�2 exp
��m=T��K3=K2�� is an ex-
pression of purely fluid (thermal) attributes. From the
indicial asymmetry of M (22), we find that TU	@	$ �
�T d$=dt � 0 �d=dt � @=@t� V � r� is the total time
derivative leading to the well-known isentropic equation
of state $ � const [2]. But this constancy is along the
fluid streamlines and in general the entropy $ is space-
time dependent.

Let us first examine the fate of a fluid for which $ is a
global constant (homentropic fluid). This special case of
the homentropic fluid is of great importance in the theory
of plasma self-organization; it is the most general system
(others have either constant density or constant tempera-
ture) in which the pressure force in the nonrelativistic
equation of motion becomes a full gradient. This, in turn,
allows the equation to be cast in a vortex dynamics form
essential for the existence of the constant of motion
which lie at the foundation of self-organization [3,4].
For the homentropic fluid, then, the equation of motion
becomes

U�M	� � 0; (24)

a remarkably simple and revealing form. Remembering
that U�F

	� is the expression for the electromagnetic
force, (24) tells us that the ‘‘magnetofluid’’ field M	�,
obtained from the unification of the flow field and the
electromagnetic field, exerts no net force on the fluid; the
entire complicated fluid dynamics of relativistic charged
particles in an electromagnetic field is contained in this
rather innocent statement.

The construction of M�	 is the centerpiece of this
effort. It is through M�	 that the flow field and the
electromagnetic field are put on the same footing.
Needless to, say, that it is an inherent and fundamental
property of the equation of motion; the formalism simply
reveals the unity.

At this stage it is possible to partially answer the
questions that motivated this effort. Through the con-
struction of the fully antisymmetric tensor S�	, we
were, indeed, successful in dressing the fluid velocity
field in electromagnetic clothing. This transformation,
then, paved the way for the tensor S�	 to combine with
the electromagnetic field tensor F�	 to yield the final
unified field tensor M	�.

To answer the first question we notice that a simple
corollary of (24) is that, in the absence of the EM field,
the fluid obeys
035001-2



P H Y S I C A L R E V I E W L E T T E R S week ending
24 JANUARY 2003VOLUME 90, NUMBER 3
U�S
	� � 0; (25)

implying that the recipe to convert the field-free Eq. (25)
to the equation of motion pertinent to the fluid immersed
in the EM field (24) is contained in the substitution
S�	 ! S�	 � �q=m�F�	 that readily follows from
fU	 ! fU	 � �q=m�A	, which for f � 1, would have
been the minimum coupling prescription. For low tem-
peratures, f does tend to unity and our prescription does
approximately reduce to minimum coupling. As long as
there is finite temperature, however, the statistical nature
of the system (temperature being a statistical notion)
becomes manifest and a purely inertial notion like the
minimum coupling has to be suitably modified. The ef-
fective momentum p � mf�V could be interpreted either
in terms of an effective mass (mf) or an effective relativ-
istic factor ��f�; either of these can be very different
form its original value for plasmas with relativistic
temperatures.

Before working out some of the consequences of
Eq. (24), let me go back to the more general case of the
isentropic fluid. After straightforward algebra (including
using �d=dt � U�@�), we could rewrite Eq. (22) as

U�H
	� � 0; (26)

where the general magnetofluid tensor H � M� N
has an additional term N	� � �m=q�f
@	�T$U�� �
@��T$U	�� � $
@	�TU�� � @��TU	��g which disap-
pears when $ is a global constant. In analogy with the
analysis following (24), Eq. (26) implies that the passage
from the field-free dynamics to the dynamics with the
EM field, is affected through the prescription 
S� N� !

S� N� � �m=q�F � �m=q�H, where H is the relevant
unified field for this general case. It is difficult, however,
to establish the relationship of this prescription (at the
field level) to the minimal coupling because the tensor N,
though fully antisymmetric, is not derivable from a
potential as F is from A (or S is from fU). The unification
at only the field level suggests that the isentropic fluid
will exhibit behavior similar to its special case for
those aspects of plasma dynamics that do not depend
explicitly upon the potential and depend only on the fields
(E and B).

Thus we find that there always exists a definite pre-
scription for deriving the equations of motion of a plasma
embedded in an arbitrary EM field from their field-free
versions. Depending upon the magnitude and nature of
the statistical attributes of the plasma (entropy and tem-
perature), this prescription could differ from the minimal
coupling prescription of particle dynamics. What is re-
markable is that for a very important case of a home-
ntropic plasma the two prescriptions are essentially
similar.

We now go back to derive some consequences of the
unified dynamics represented by (24). Just to make sure
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that the compact form (24) [or Eq. (26)] has all the
familiar physics, let us take its nonrelativistic limit.
This is easily accomplished by letting � ! 1, f ! 1
everywhere except in the term rf� in Q, where the first
order terms are needed (leading order terms vanish).
Using the large �m=T� expansion of f ’ 1� 5=2�T=m�,
and � ’ 1� V2=2, we find

rf� ! r

�
V2

2
�

5

2

T
m

�
; (27)

which leads to the NR limit

m
@V
@t

�r

�
m
V2

2
�
5

2
T
�
�qfE�V
B��m=q�rV�g;

(28)

precisely the standard equation of motion for a home-
ntropic fluid with the equation of state p/n5=3, the non-
relativistic limit of $� const. It is interesting that the
gradient forces seem to have been completely subsumed
in the definition of the flow tensor S�	.

To give a glimpse of the conceptual as well as calcula-
tional potential of this approach which assigns coprimacy
to the flow and the electromagnetic field I will present a
few consequences.

I will first delineate a procedure for deriving the bi-
linear constants of motion of the system. It is well known
that for the electromagnetic field in vacuum, the helicity

h �
Z
A � Bd3x (29)

is a constant of the motion; it follows from the general
notion in the field theories that the total ‘‘charge’’R
K0d3x associated with a conserved four-vector

@�K� � 0 (30)

is a constant of the motion, i.e., �d=dt�
R
K0d3x � 0. It is

easy to identify that the four-vector leading to helicity
conservation is A�F

�	. Our unification naturally tells us
that the equivalent invariants for the hot fluid will be
obtained by replacing F�	 ! M�	 (the dual of M) and
A� by A� � �m=q�fU�, the minimal coupling peculiar
to hot fluids. Thus the vector

K� �

�
A� �

m
q
fU�

�
M�	 (31)

will yield the constant of motion

G �
Z
d3xK0; (32)

where

K0 � 
A� �m=q�fU� � 
B� �m=q�r  fU�; (33)

if
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@�K� � 2

�
E�

m
q
Q
�
�

�
B�

m
q
R
�
� 0: (34)

This is indeed the case, and can be readily verified by
using the vector part of (24).

There thus exists an invariant for each dynamical
species of the plasma; there is one for electrons and one
for the ions for a two-component electron ion system. The
‘‘helicity’’ invariant found in Eqs. (30) and (31) is ex-
tremely general; it pertains for arbitrary temperatures
and flow speeds. To the best of my knowledge, this result
has not been derived before although its limiting case for
nonrelativistic temperatures �f � 1� is well known [3].
Using the conventional techniques, it would take much
effort and algebra to derive a result of this generality; the
new formalism makes it accessible in a few well-defined
steps.

We would like to remark here that for the general
isentropic fluid @�K

� is not zero. Barring the special
cases of either uniform temperature or density it is not
even a full three divergence. Thus but for the three excep-
tional cases enumerated earlier, G is not a constant of the
motion.

If m=q ! 0 for a given species, then the invariant
associated with its motion simply reverts to the standard
helicity h; this is often done in two-fluid theories where
the electron inertia is neglected. In these theories, the
ionic motion does, indeed, create the additional general-
ized helicity defined by (32) [3].

I will now derive a nonrelativistic result of considerable
value and significance by exploiting the unified magneto-
fluid field. The equation of motion (24) can be broken into
its scalar and vector parts as 
U � �V�,

V � ÊE � 0; (35)

ÊE � V  B̂B � 0; (36)

where ÊE � E� �m=q�Q, and B̂B � B� �m=q�R are the
effective electric and magnetic fields. The fluid velocity
takes the form

V � êeV � V?; (37)

with

V? �
ÊE  B̂B

jB̂Bj2
; (38)
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where e is the unit vector along B̂B. For a nonrelativistic
plasma, i.e., for V � 1, and jV?j � 1; ÊEj � jB̂Bj. In this
approximation, the effective Lagrangian density for the
magnetofluid field,

Leff � �
1

4
M�	M�	 � �

1

2

B̂2B2 � Ê2E2�; (39)

reduces to

LN:R
eff ’ �

1

2
B̂2B2 ’ �

1

2

�
B�

m
q
r V

�
2
; (40)

from which it is easy to deduce that the total effective
Hamiltonian (in the same approximation) is simply

H �
1

2

Z
d3x

�
B�

m
q
r V

�
2
; (41)

i.e., it is proportional to the effective ion-enstrophy or the
effective energy of the magnetic field seen by the ions.
The association of the ion-enstrophy with an effective
Hamiltonian strongly fortifies the case for using it as
a minimizing functional for the derivation of self-
organized magnetofluid states [4].

This formalism and Eq. (24) are likely to provide
new insights into the dynamics of relativistic high-
temperature charged fluids. It is also hoped this compact
and encompassing formalism may help guide the formu-
lation of a similar theory for the interaction of fluids with
non-Abelian gauge fields.
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