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Arithmetical Method to Detect Integrability in Maps
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We develop a method to detect the presence of integrals of the motion in symplectic rational maps, by
representing these maps over finite fields and examining their orbit structure.We find markedly different
orbit statistics depending upon whether the map is integrable or not.
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on C or R , but the complex or real field can be replaced
by any field in which the coefficients and parameters of

The family (1) can be made to act on the finite space
F2
p for all rational values of the parameter �, whose
Integrable dynamical systems have a distinguished
history and model many natural phenomena. These sys-
tems have no chaos, their future can be predicted, and
some of their features persist under perturbation, as pre-
scribed by the Kol’mogorov-Arnol’d-Moser theory [1].
Famous examples with continuous time include the two-
body problem, various spinning tops, the Toda Hamil-
tonian, and various soliton equations appearing in
numerous physical contexts [1]. Recently, there has been
intense study into integrable dynamical systems with
discrete time, including integrable maps and partial dif-
ference equations (see [2] and the excellent overviews
[3]). As [2,3] show, discrete integrable systems promi-
nently feature in increasingly numerous areas: exactly
solvable models in statistical mechanics, discrete analogs
of integrable systems in classical mechanics or solid state
physics, reductions or discretizations of integrable soliton
(partial) differential equations, and discrete geometries.

A dynamical system is integrable if it possesses a
sufficient number of integrals of the motion, in involution
with respect to a symplectic structure. How do we know
a priori whether a discrete system might be integrable,
and how do we distinguish integrable from near integra-
ble? An important early integrability detector was the
singularity confinement method [4], an analog of the
Painlevé criterion for differential equations. While effec-
tive at isolating the candidate integrable parameter values
in a multiparameter space, singularity confinement is not
sufficient for integrability [5] and is also not invariant
under birational transformation. A more sensitive and
birationally invariant test involves calculating the alge-
braic entropy of a rational map, the conjecture being that
entropy vanishes if and only if the map is integrable [5,6].
A drawback is that carrying free parameters in the alge-
braic entropy test is computationally delicate. Other re-
cent approaches to integrability detection include
studying difference equations in the complex plane uti-
lizing the Nevanlinna theory [7] and characterizing in-
tegrability of birational maps using classical algebraic
geometry [8].

An n-dimensional rational map is usually made to act
n n
0031-9007=03=90(3)=034102(4)$20.00 
the map can be represented. In this Letter we consider
autonomous rational maps acting over finite fields, the
simplest instance of which are the integers modulo a
prime number p, denoted by Fp. Any rational map whose
coefficients are algebraic numbers (roots of polynomials
with integer coefficients) can be represented over infi-
nitely many finite fields. Over these fields, the dynamics
can be described by finite exact computation, and our
diagnostic test described below—based on counting or-
bits—is simple and dimension independent.We will show
that substantial inference on the presence or absence of an
integral of the motion in a parametrized family of maps
can often be made by analyzing the family over a single
finite field, which can be quite small. To identify the
values of the parameters at which an integral occurs,
we describe a sieve algorithm, involving several fields.
Finally, the broader picture is revealed by analyzing the
asymptotic (large fields) period distribution functions,
which show structural differences between the integrable
and nonintegrable cases. For simplicity, we restrict our
attention to rational parameter values, which feature
prominently in the literature. Dynamical systems over
finite fields are an established area of research, interesting
in their own right [9]. However, integrability in this
context has attracted relatively little attention other than
in connection with cellular automata [10]. We hope that
our methodology can lead to fast and decisive recognition
of discrete integrability in the many physical contexts
outlined above where it is relevant.

For illustration, consider the following one-parameter
family of two-dimensional maps:

x0 � y; y0 � �x�
1� 2y� �y3

1� y2
; (1)

which for � � 0 has the following integral of motion:

I�x0; y0� � I�x; y�;

I�x; y� � x2y2 � x2 � y2 � 2xy� x� y:
(2)

This family belongs to a class of area-preserving integra-
ble maps discovered by McMillan [11].
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denominator is coprime to p. The polynomial 1� y2 has
no roots modulo p when p � 3 �mod 4� ([12], theorem
82); thus our map is invertible over these fields, and the p2

phase points decompose into cycles.
Significantly, since the Eqs. (2) are algebraic, they still

hold over Fp. Integrability no longer translates into the
trademark picture of a foliation of phase space by curves.
Nevertheless, each level set of the integral is still an
invariant algebraic curve C, now over a finite field Fp.
The number #C�Fp� of points on such a curve (including
points ‘‘at infinity,’’ see below), is sharply constrained by
the celebrated Hasse-Weil bound

p� 1� 2g
����
p

p
	 #C�Fp� 	 p� 1� 2g

����
p

p
; (3)

which applies to any irreducible curve of genus g. The
sharpness of this bound (which is invariant under bira-
tional transformations and admits higher-dimensional
generalizations) stems from its equivalence to the
Riemann hypothesis for function fields [13] (see the last
of these references for recent applications). Since the
genus is bounded by the square of the degree of the
integral, the bound (3) yields an equidistribution result:
the p2 phase points foliate into O�p� level sets with O�p�
points each. This estimate holds also for reducible curves,
where an orbit can spread among several irreducible
components.

To see how the upper bound in (3) affects the orbit
structure, we compute the lengths of all cycles of (1) over
Fp. As the parameter space is finite, we display the
maximal period among all cycles, for each parameter � 2
f0; 1; . . . ; p� 1g (Fig. 1). The case � � 0 is distinguished
by a markedly lower maximal period, which lies below
the Hasse-Weil bound for g � 1 (the horizontal line). This
choice of g is justified by the fact that for a rational map
on C2 or R2, which is of infinite order and possesses a
rational integral, the genus of each level set of this in-
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FIG. 1. Maximal cycle length as a function of �, for the map
(1) over Fp with p � 23. The minimum occurs for � � 0. The
horizontal line represents the Hasse-Weil bound (3) for g � 1.
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tegral is at most 1 (see the second reference in [3]).
Generically, the genus will be 1, dropping to zero on
curves possessing extra singularities.

The Hasse-Weil estimate, while providing a rigorous
and birationally invariant necessary condition for maxi-
mal cycle length in an integrable map, may cause incor-
rect inference if the integral is reducible, or if the
maximal cycle length is low due to fluctuations. The
mean period hTi [with T � T�x�, x 2 F2

p, averaged with
respect to the uniform measure], and the number of cycles
Nc are more stable observables, which also clearly detect
the integrable parameter value � � 0 in (1).

Note that the concept of near integrability does not
exist here, e.g., � � 10�1000 � 13 �mod 23�. Indeed each
computation refers to an infinite equivalence class of
maps, since every element of Fp is the image of a set
of algebraic numbers which is dense on the complex
plane. In particular, the integrable parameter value � �
0 �mod 23� represents all rationals with the numerator
divisible by the prime p � 23. One notes that among
those rationals, zero is the one of minimal complexity.
We shall return to this point below.

The analysis of the family (1) was simplified by a
straightforward characterization of its singularities: the
denominator 1� y2 has two roots modulo p for p � 2 and
p � 1 �mod 4�. To illustrate a more typical situation, we
consider the map

x0 � y; y0 �
f1�y� � xf2�y�
f2�y� � xf3�y�

; (4)

where 0
@
f1
f2
f3

1
A�y� � A0Y � A1Y; Y �

0
@
y2

y
1

1
A:

Here A0 and A1 are 3� 3 matrices. When one of them is
symmetric, the map is measure preserving; when both
are symmetric, it becomes the integrable symmetric
Quispel-Roberts-Thompson map [14], with integral I �
�X � A0Y�=�X � A1Y�. The denominator of y0 in (4) is in
general a quintic polynomial in two variables, with a
complicated root structure.

We deal with singularities by studying the dynamics on
the two-dimensional projective space P�Fp�

2 with homo-
geneous coordinates �X; Y; Z�; it comprises the ‘‘affine
plane’’ �X; Y; 1� (p2 points) together with the ‘‘line at
infinity’’ �X; 1; 0� [ �1; 0; 0� (p� 1 points). (The projec-
tive map is obtained by substituting the expressions x �
X=Z, y � Y=Z in the original map, and then clearing
denominators; see [5] for an example.) We then construct
the orbit graph of the map on the p2 � p� 1 points, by
connecting two projective points (vertices) with an ori-
ented arc whenever one vertex is the image of the other
under the map. This graph decomposes into connected
subgraphs, which are either cyclic (the periodic orbits), or
noncyclic, containing vertices of degree greater than 1
(the noninvertible points), and edges without outgoing
arcs (the points where the map is undefined).
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TABLE I. Candidate � values for integrability of (4) for
various primes p.

p � 2 HW min�hTi max� Nc

31 6,20,29 6 20
37 3,5,6,24 21 24
41 7,13,16,20 16 13
43 28 39 28
47 15,16 16 15
53 17,20 17 17
59 19,32 19 19
61 40 40 40
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The vertices of degree greater than 1 are effectively
base points of an integral (if present), that is, members of
every level set. In the presence of noncyclic components,
we have adopted two strategies: (i) perform the statistical
analysis on cycles only; (ii) apply the Hasse-Weil test to
cycles as well as to the orbit segments obtained by re-
moving the vertices of degree greater than 1 from each
noncyclic component.

To illustrate these procedures, we specialize (4) as
follows:

A0 �

0
@
1 2 3
2 4 5
3 5 7

1
A; A1 �

0
@

9 � 3
�2=3 6 5
3 5 1

1
A:

Integrability now occurs for the single value � � �2=3
(so the field F3 must be excluded). In Table I, we display
for various primes, the result of selecting � according
to various criteria, with the correct value � �
�2=3 �mod p� in boldface. HW represents the Hasse-
Weil selection on the fragmented graph [as per strategy
(ii)], while the average period hTi and the number of
cycles Nc are both computed considering cycles only [as
per strategy (i)]. Maximizing Nc seems consistently reli-
able even for small primes, while the other criteria over/
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FIG. 2. Number Nc of cycles of the map (5) over Fp with p �
89, as a function of �. The peaks occur at � � 0; 1; 30; 45 which
are congruent (mod 89) to � � 0; 1; 1=3; 1=2.
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under select for small primes, to become reliable for
larger ones.

To recover the rational value � � �2=3 from the can-
didate integrable parameter value(s) �i modulo various
primes pi, we use a sieve method based on continued
fractions [15]. The idea is to order the infinitely many
rationals r=s congruent to �i modulo pi in order of
ascending height h, where h�r=s� � jrsj. As the number
of primes pi considered increases, all rationals— except
�—will have diverging height, and will fluctuate errati-
cally. This makes the identification of � possible.

For illustration, we apply the sieve to the � values of the
last six primes of the HW column of the table. The two
rationals of smallest height are displayed below, together
with the associated sequence of residues �i

�
2

3
�13; 28; 15; 17; 19; 40�;

223

77044
�20; 28; 16; 20; 19; 40�:

The inference � � �2=3 is compelling.
Integrability may occur at several parameter values,

for instance in the mapping

x0 � y� 1� �; y0 � x
y� �
y� 1

: (5)

This map possesses a rational integral for � �
0; 1; 1=2; 1=3 [16]. The cycle statistics become unequivo-
cal for p > 50. Reduction modulo p � 89 (Fig. 2),
singles out four parameter values: � � 0; 1; 30; 45, con-
gruent to 0; 1; 1=3; 1=2, respectively. By inspection, we
have localized the four peaks in the number Nc of cycles,
for the five largest primes p < 100, obtaining a total of
45 � 1024 combinations of parameters, giving as many
congruences modulo M � 4132280413. The correspond-
ing continued fractions give several thousand rational
0

0.2

0.4

0.6

0.8

1

D(x)

0.2 0.4 0.6 0.8 1x

FIG. 3. Period distribution function D�x� for the maps (1)
(top curve) and (4), at their respective integrable values [i.e., 0
and �2=3 (mod p)]. The data are obtained by averaging over
primes p in the range 150< p< 180.
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FIG. 4. Period distribution function D�x� for the maps (1) and
(4) at p � 103 and 131, respectively, averaged over all non-
integrable � values. Averaging over p for fixed nonintegrable �
gives the same curve.
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numbers as candidates for the four sought � values. Of
these, the five of smallest height are

� � 0; 1;
1

2
;
1

3
;�

149426

5
:

The convergence of the first four is confirmed by repeat-
ing the computation on subsets of these primes.

Finally, we briefly describe the underlying asymptotic
regime [15]. Let Cp be the set of periodic points in phase
space, for a given map. We define

Dp�x� � #fy 2 Cp j T�y� 	 rxg=#Cp;

where T is the period, while r � p and r �
���������
#Cp

p
for in-

tegrable and nonintegrable maps, respectively. Extensive
numerical evidence suggests that limp!1Dp�x� � D�x�
exists. In the integrable cases, the distribution function
features a rich structure, with gaps of forbidden periods,
suggestive of a devil’s staircase, and some rigidity, i.e., in
the location of gaps for different maps (Fig. 3). By con-
trast, in the nonintegrable case, there appears to be a
unique, possibly smooth, distribution (Fig. 4), which
differs from that of a random permutation [for the latter,
one would have Dp�x� � x=p, using Parker’s lemma [17]].
Moreover, the expected length of the longest cycle is
O�p2� for random permutations [18], while in our case
it seems to grow at a slower rate.

Extensions of the above ideas to rational maps that are
multiparameter, nonautonomous, and/or higher dimen-
sional are currently being investigated.

The authors thank P. J. Cameron, A. Veselov, and C.-M.
Viallet for useful discussions.
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