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According to Belinsky, Khalatnikov, and Lifshitz, gravity near a spacelike singularity reduces to a
set of decoupled one-dimensional mechanical models at each point in space. We point out that these
models fall into a class of conformal mechanical models first introduced by de Alfaro, Fubini, and
Furlan (DFF). The deformation used by DFF to render the spectrum discrete corresponds to a negative
cosmological constant. The wave function of the Universe is the zero-energy eigenmode of the
Hamiltonian, or the spherical vector of the representation of the conformal group SO(1,2). A new
class of conformal quantum mechanical models with enhanced ADE symmetry is constructed, based
on the quantization of nilpotent coadjoint orbits.
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While cosmological singularities have thus far eluded
any satisfactory treatment in quantum gravity, insight
into their generic properties is afforded by the classi-
cal analysis of Belinsky, Khalatnikov, and Lifshitz [1].
Under a self-consistent hypothesis of decoupling of the
dynamics at nearby points upon approaching a spacelike
singularity, they show that a generic solution of four-
dimensional Einstein gravity exhibits a chaotic oscilla-
tory behavior near the big bang (or big crunch). This
subject has attracted much recent attention, with the dis-
covery that the chaotic properties of the dynamics are
tied to the hyperbolicity of the Kac-Moody algebra under-
lying the billiard geometry on which the motion takes
place [2,3]. This is, in particular, the case of all models
descending from eleven-dimensional supergravity or
N � 1 supergravity in ten dimensions [4]. The spatial
gradients, although subleading at the singularity, are
also described by the Kac-Moody structure [5].

Our aim in this Letter is twofold. First, we point out an
important feature of the one-dimensional model for the
gravity modes at each decoupled point: It exhibits the
conformal invariance found in one-dimensional quantum
mechanics by de Alfaro, Fubini, and Furlan (DFF) [6].
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Conformal quantum mechanical models have already
appeared in black hole physics [7,8], yet their relevance
to cosmology seems to have been hitherto unnoticed.
More specifically, the Wheeler-DeWitt equation is but
the Schrödinger equation considered by DFF, restricted
to zero energy. The wave function of the universe thus lies
at the bottom of a continuum of delta-function normal-
izable states. Retaining the effect of a negative cosmo-
logical constant discretizes the spectrum while
preserving conformal invariance. In mathematical terms,
the wave function of the universe is therefore the spherical
vector of the representation of the conformal group.
Second, we construct a new class of conformal quantum
mechanical models, where the conformal group is en-
hanced to an ADE noncompact group. In these models,
the spherical vector, and, hence, the wave function of the
universe, is known exactly.

We start with �n� 1�-dimensional Einstein gravity
with a cosmological constant and reduce down to a
�0� 1�-dimensional system. Parametrizing the metric as

ds2 � �
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the Einstein-Hilbert action reduces to
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where V denotes the volume of the spatial metric and UM

coordinatize the symmetric space S � Sl�n�=SO�n�, with
constant negative curvature, and homogeneous metric
dUMGMNdU

N :� � 1
2dĝgijdĝg

ij (with detĝg � 1). In this
form, we recognize the action for a ‘‘fictitious’’ point
particle, with mass squared m2 � 4�, tachyonic for
negative (AdS) �, propagating on a Lorentzian cone with
base S and metric
d�2 � �
2�n� 1�

n
dV2 � V2dUMGMNdUN: (3)

The rescaled lapse � plays the role of an einbein gauge
field enforcing invariance under general time reparamet-
rizations. The appearance of the volume V with a negative
kinetic term suggests its use as a ‘‘cosmological time.’’
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Indeed, it develops with time as ��V=��d=dt�2V �
�2n�=�n� 1��V, while the particle follows geodesics on
the cone and, hence, on its base S. A similar reduction
in the presence of extra scalar and gauge fields would
yield a cone over an enlarged homogeneous space [e.g.,
SO�n; n�=�SO�n� 	 SO�n�� in the presence of a Kalb-
Ramond two form and dilaton].

Since the conical moduli space (3) admits a homothetic
Killing vector V@V , the free particle should exhibit con-
formal invariance [8]. This is easily shown by introducing
conjugate momenta p and PM for the canonically nor-
malized volume coordinate � �

���������������������������
8�n� 1�V=n

p
and the

shape moduli UM. The Hamiltonian following from the
action (2) reads

H �
�
V

�
1

2
p2 �

4�n� 1�

n�2 ��
n�

4�n� 1�
�2

�
: (4)

The equation of motion of � forces H to vanish, after
which the gauge � � V can be imposed. Here � �
�PMGMNPN is the quadratic Casimir of the action of
Sl�n� on the homogeneous space Sl�n�=SO�n� and has
vanishing Poisson brackets with � and p. Therefore it
effectively plays the role of a coupling constant g �
8�n� 1��=n for the 1=�2 potential. Indeed, at � � 0,
we recognize in (4) the Hamiltonian of the conformal
mechanical system introduced by de Alfaro, Fubini, and
Furlan [6]. The generators,
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g
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; (5)

represent the conformal group SO�1; 2� in �0� 1� dimen-
sions, fE�; E�g � 2D0, fD0; E�g � �E�. For vanish-
ing �, the Hamiltonian H � E� has unit dimension
with respect to the generator of conformal rescalings D0;
hence, the system is conformally invariant. Remark-
ably, the introduction of a cosmological term preserves
the action of the conformal group SO�2; 1�, as it simply
amounts to choosing a different generator H �
E� � n�=�2n� 2�E� as the Hamiltonian. This deforma-
tion was considered in [6] although without a clear physi-
cal motivation.

Let us now discuss some aspects of the quantum dy-
namics in this toy model of a cosmological singularity.
While we understand little about quantum gravity at a
spacelike singularity, we may assume that the decoupling
of nearby points still holds and works in a minisuper-
space truncation. Replacing canonical momenta by their
Schrödinger representation p! i@=@�, PM ! i@=@UM,
the Hamiltonian constraint (4) becomes the Wheeler-
DeWitt equation [9],

H �

�
�
1

2
@2 �

4�n� 1�

n�2 ��
n�

4�n� 1�
�2

	
 � 0; (6)

acting on wave functions  ��;UM�, where � is the qua-
dratic Casimir of the Sl�n� action on the homogeneous
space S. As usual, a vanishing Hamiltonian implies that
the wave function  is independent of the time t; never-
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theless correlations between the volume � and the other
observables UM may be used to set up measurements [9].
One may now recognize the Wheeler-DeWitt Eq. (6) as
the Schrödinger equation of DFF’s conformal quantum
mechanics, with coupling g � 8�n� 1��=n, restricted to
zero-energy states. Invariance under the conformal group
SO�1; 2� is retained at the quantum level after resolving
the ordering ambiguity D0 ! ��p� p��=4. (Indeed, the
requirement of conformal symmetry and its extension
below uniquely fix all ordering ambiguities.) In particu-
lar, the effect of a cosmological constant �< 0 is to
replace the parabolic generator E� with continuous spec-
trum R�, by a compact, discrete spectrum, generator
H � E� � n�=�2n� 2�E� (for � > 0, H has a continu-
ous spectrum). It is intriguing that this seemingly favor-
able case corresponds to a tachyonic fictitious particle.

Despite the formal identity between theWDWand DFF
Hamiltonians, it is worth noting several crucial differ-
ences. First, the WDW equation picks out zero-energy
modes of H only, so that the requirement of boundedness
from below is no longer necessary. Indeed, the coupling g
in our problem appears to be negative on square inte-
grable wave functions on S (for which �< 0), and so does
the mass term for �< 0. This is in fact a standard feature
of canonical gravity, where the conformal factor always
appears with a kinetic term of the ‘‘wrong’’ sign [9].
Similarly, in a traditional quantum mechanics setup,
one usually requires states to have a finite L2 norm around
� � 0 [6]. When � is viewed as a cosmological time, the
requirement of square normalizability is no longer sen-
sible (it can, however, be useful to select recollapsing
universes [9]). The analogy of (6) with a massive Klein-
Gordon equation would suggest instead to consider the
Klein-Gordon norm on spacelike slices of fixed �
(‘‘third’’ quantization may be used to cure the nonpositive
definiteness [10], although its interpretation remains un-
clear). At any rate, our current understanding of cosmo-
logical singularities does not allow us to specify the
boundary conditions reliably; we therefore proceed with-
out further ado.

A few comments are in order about the chaotic proper-
ties of these cosmological models. First, our discussion
was carried out for free Kasner flights, in the absence of
the potential terms coming from spatial gradients. As
one approaches the spacelike singularity, the potential
terms behave as infinitely steep reflection walls [11]. It
is possible that their effect could be mimicked by mod-
ding out by a discrete symmetry group [e.g, the walls
exchanging the various radii are included in a Sl�n;Z�
subgroup of Sl�n� acting on S]. This group is, however, of
a rather wild nature, as it should contain theWeyl group of
a hyperbolic Kac-Moody algebra [2,3], and it is unclear at
this stage how to describe the geodesic motion on such an
object. One may speculate that the universal SO�2; 1�
subalgebra uncovered in [12] in general hyperbolic Kac-
Moody algebra may play a role in implementing confor-
mal invariance.
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We now present a construction of a class of conformally
invariant quantum systems based on the quantization of
nilpotent coadjoint orbits of finite Lie groups. In contrast
to generic orbits, nilpotent ones are especially interesting
as they possess fewer or no free parameters. Such con-
formal systems were first found in the course of construct-
ing theta series for nonsymplectic groups [13], and a
particular example was given independently in [14] for
the minimal representation of E8. For simplicity, we shall
illustrate it on the simplest nontrivial case,D4, which will
coincide with the model (6) for �2� 1� gravity.

The classical phase space of our systems arises from
the coadjoint orbit of a nilpotent element of smallest order
in a finite simple Lie algebra G. This element can be
conjugated into the generator associated to the lowest
root E�!. The Sl�2� subalgebra generated by
fE!;D!; E�!g with D! � �E!; E�!� will be the confor-
mal group in �0� 1� dimensions, and E�! be chosen as
the Hamiltonian. The Cartan generator D! grades the
algebra into five subspaces,G � G�2 �G�1 �G0 �G1 �
G2, such that the top and bottom subspaces are one
dimensional, G�2 � RE�!. The coadjoint orbit of E�!
can be parametrized byPnG � RH! �G1 �G2, whereP
is the stabilizer of E�! under the coadjoint action. The
level-one space G1 is a Heisenberg algebra, which can be
diagonalized in the form �E#i; E$j� � %ijE!. We can thus
represent these generators as canonical coordinates and
conjugate momenta, E#i � ypi, E$i � xi, E! � y. The
maximal subalgebra H in G commuting with SO�2; 1�
lies in G0 and acts linearly as canonical transformations
on the coordinates and momenta fxi; pig, leaving y invari-
ant. The choice of a polarization of G1 into coordinates
and momenta further breaks H to a subgroup Hl acting
linearly on the coordinates. A standard polarization
is to choose for #0 the simple root to which the af-
fine root ! attaches on the Dynkin diagram of G and
for #i>0 the positive roots such that h#0; #ii � 1 [15].
The canonical momentum associated to y is obtained
in turn from the Cartan generator associated to #0,
D#0

� �E#0
; E�#0

� � py� p0x0. So as to bring the gen-
erator E! to the conformal quantum mechanics form (5),
we make a canonical transformation,

y�
�2

2
; xi�

�qi
2
; p�

1

�
p��

1

�2qi)i; pi� 2
)i
�
:

(7)

The generators of the SO�2;1� subalgebra take the form

E!�
1

2
�2; D!��p�; E�!�

1

2

�
p2�

4�

�2

	
; (8)

where � is, up to an additive constant, the quadratic
Casimir of H, hence, a quartic invariant of the coordi-
nates and momenta fqi;)ig. Finally, the symmetry is
enhanced from SO�2;1�	H to all ofG using two discrete
generators: (i) the Fourier transform on all positions qi
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at once, corresponding to the longest word in the
Weyl group, and (ii) the Weyl reflection with respect to
#0, acting on wave functions as W ��;q0;qi� �
e��I3�qi��=�2q0� �

�������������
��q0

p
;

�����������������
��3=q0

p
;

�������������������
��qi=q0

p
�, where I3

is the cubic invariant of the positions under the linearly
realized Hl. The compatibility between the two actions,
and indeed the whole construction, relies heavily on the
invariance of the non-Gaussian character exp�iI3�xi�=x0�
under Fourier transform [15].

As an example, the algebra D4 decomposes as 1�2 �
�2; 2; 2��1 � ��1; 1; 1� � �3; 1; 1� � perm�0 � �2; 2; 2�1 � 12
under Sl�2�3 	 R, where R denotes the Cartan generator
D! associated to the highest root. The coordinates and
momenta correspond to the grade-one space and trans-
form as a (2,2,2) of H � Sl�2�3. They satisfy the Heisen-
berg algebra �qaA.; qbB#� � 1ab1AB1.#. The actions of
each Sl�2� factor in H are represented by the angular
momentumlike operators, �2 � �2.#1ab1ABq

aA.qbB#,
with similar definitions for sm and SM. It is easy to check
that these generators satisfy the Sl�2� algebra, ��2;�3� �
123���. The quadratic Casimirs of all three Sl�2� are
identical and equal to the unique quartic invariant of the
(2,2,2) representation. The generators of the SO�2; 1�
subalgebra then read as in (8) with � the common qua-
dratic Casimir of the three Sl�2�. To clarify the meaning
of the Hamiltonian in (8), let us choose a polarization
such that the QA. � q1A. are coordinates and q2A. are
momenta. The bispinor QA. can be thought of as a vector
QI of SO�2; 2�, parametrized by three ‘‘polar angles’’
� 2 H3 � SO�2; 2�=SO�2; 1� � SO�2; 1� and its length
squared 52 � QI�IJQJ, where �IJ is the signature (2,2)
metric. The quadratic Casimir then corresponds to the
angular momentum squared on the pseudosphere H3, i.e.,
the Laplacian on Sl(2). Out of the four coordinatesQI, we
see that only the three hyperbolic polar angles receive
kinetic terms in the Hamiltonian E�!, while the radius 5
decouples.

A natural object in the theory of minimal representa-
tions is the spherical vector, i.e., the wave function anni-
hilated by all compact generators E. � E�.. For
irreducible and so-called spherical representations, this
vector is unique. From the expression (8), we see that a
spherical vector corresponds to a zero-energy state of the
Hamiltonian with a negative ‘‘cosmological constant,’’
i.e., H � E�! � E!. For D4, the spherical vector should
also be invariant under the compact U(1) inside each Sl(2)
factor, so the coordinates of the D4 conformal quantum
mechanics are effectively valued in H3=U�1� �
Sl�2�=U�1�. This is indeed the conformal model (6) of
�2� 1� gravity with S � SO�2�. Therefore, supplement-
ing the fields ��;U1; U2� 2 R 	 Sl�2�=U�1� with an an-
gular variable and a decoupled radius 5, the conformal
symmetry of reduced D � 2� 1 gravity is enhanced to
an SO(4,4) noncompact spectrum generating symmetry.
The spherical vector of the D4 minimal representation
has been obtained in [13]; in the polarization used here
it reads
031302-3



TABLE I. Nonlinearly realized symmetry G, canonically realized H, representation of positions and momenta under H, linearly
realized Hl, homogeneous space S including decoupled factors R5, and functional dimension of the Hilbert space for models with
enhanced conformal symmetry.

G H G1 Hl S Dim

An�1 Gl�n� 2� �n� 2� � �n� 2� Sl�n� 2� R5 	 Sl�n� 2�=�Sl�n� 3� 	 Rn�3� n� 1
Dn Sl�2� 	Dn�2 �2; 2n� 4� Dn�2 R5 	 SO�n� 2; n� 2�=SO�n� 3; n� 2� 2n� 3
E6 Sl�6� 20 � �0; 0; 1; 0; 0� SO�3; 3� R5 	 SO�3; 3�=�SO�3� 	 SO�3�� 11
E7 SO�6; 6� 32 Sl�6� R5 	 Gl�6�=Sp�6� 17
E8 E7 56 Sl�8� R5 	 Sl�8�=Sp�8� 29
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 D4
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�3=2e�S

S
; S �

1

2

��������������������������������������������
�4 � �2tr�QtQ� � 54

q
:

(11)

It would be very interesting if the new coordinate 52 �
det�QA.�, appearing here as a degeneracy label, had a
cosmological interpretation.

A similar conformal quantum mechanical system can
be constructed for any finite simple Lie algebra G, except
for the SO�2n� 1� series. The details of the construction
of the minimal representation have been spelled out for
the simply laced case in [13], where the spherical vector
has also been obtained. In order to translate the results of
[13] into the presentation (8) suitable for interpreting E�!
as the Hamiltonian of a quantum mechanical system, one
only needs to perform the canonical transformation (7).
We thus obtain a class of quantum mechanical systems
with an enhanced conformal symmetry G corresponding
to any finite simple Lie group in (noncompact) split real
form. The field content and symmetries of these models
are summarized in Table I. A similar construction can
also be carried out for other (non-nilpotent) orbits, or for
the nonsimply laced groups G2 and F4, whose minimal
representation does not possess any spherical vector, so
that part of the compact symmetries are spontaneously
broken. An open problem is to identify gravitational
theories reducing to those in the process of dimensional
reduction.

In conclusion, conformal quantum mechanics is rele-
vant to the dynamics of gravity at a spacelike singularity.
A negative cosmological constant renders the spectrum of
the Wheeler-DeWitt operator discrete. The wave function
of the universe is then obtained as the spherical vector
of the representation of the enhanced conformal group.
We have constructed a family of conformal quantum
mechanical models with symmetry enhanced to an arbi-
trary simple noncompact group G in split real form. For
G � D4, this reproduces the conformal mechanics aris-
ing from the reduction of �2� 1�-dimensional gravity,
together with a decoupled field 5 yet to be understood.
An important question is whether this construction can
be extended to infinite Kac-Moody groups such as E10 or
031302-4
BE10, which should control the dynamics of M theory or
the heterotic string at a spacelike singularity. It would be
exciting if the dynamics of gravity at a spacelike singu-
larity was related to the geodesic motion on a coadjoint
orbit of E10, in analogy with conventional incompressible
fluid hydrodynamics.
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