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Cosmological Parameters Are Dressed
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In the context of the averaging problem in relativistic cosmology, we provide a key to the
interpretation of cosmological parameters by taking into account the actual inhomogeneous geometry
of the Universe. We discuss the relation between ‘‘bare’’ cosmological parameters determining the
cosmological model and the parameters interpreted by observers with a ‘‘Friedmannian bias,’’ which
are ‘‘dressed’’ by the smoothed-out geometrical inhomogeneities of the surveyed spatial region.
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region, so that the observed objects, within the approxi- the averaged material mass density field is actually
A considerable body of researchers in cosmology holds
the attitude that, in view of ongoing and near future high-
precision experiments in observational cosmology, the (to
a large extent established) standard model of cosmology
will be finally determined. In particular, this attitude is
supported by the possibility of precisely and unambi-
gously determining the three numbers that fix the observ-
er’s position in the cosmic triangle and characterize the
parameters of a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) cosmology [1]. Refinement of observational
data, however, must be paraphrased by a refinement of
the theoretical cosmological model. In particular, the
widely hold working assumption that the standard model
idealizes in a dynamically consistent way the real inho-
mogeneous Universe should be tested and questioned.
For instance, the conjecture that the standard model is
equivalent to an averaged inhomogeneous model cannot
be held (e.g., [2]). Indeed, in this context, the deviations of
the average model from the standard model are con-
densed into a ‘‘backreaction effect.’’ It can be explored
to understand the influence of structure inhomogeneities
on the evolution of the standard model parameters region-
ally, but it may not impair the robustness of the conceiv-
ably simplest cosmological model on the largest scales.

Complementary to this backreaction effect, we, in this
Letter, want to elaborate on a key insight into the inter-
pretation of cosmological parameters that, so far, has
escaped the attention of researchers in cosmology. It
adds a new aspect to the discussion of the effect of
inhomogeneites on the standard model parameters but,
moreover, it provides an answer to the fundamental prob-
lem of interpreting cosmological parameters in an inho-
mogeneous spacetime geometry.

Let us develop a picture that may guide our thoughts.
Imagine a finite amount of material mass distributed
inhomogeneously within some spatial domain. We sim-
plify the problem by assuming that the astronomical
experiment is carried out in a sufficiently shallow survey
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mation standards we want to imply, all lie in a ‘‘spatial’’
section and, referring to the space section itself, we
assume that the theoretical model already gives us a
suitable split into space and time, i.e., a foliation of
spacetime. Suppose now that the observer would be able
to quantify the observed objects by their amount of
material mass, employing, of course, some theoretical
considerations, so that the simplest quantity that the
astronomical experiment returns is the total amount of
material mass contained within the observed portion of
the Universe. This in turn determines, up to the normal-
ization by the ‘‘Hubble constant’’ to which we come later,
one of the standard cosmological parameters on the scale
of the observed region, the density parameter, if the
amount of mass is divided by the surveyed volume. It is
here, where the ‘‘interpretation problem’’ comes into the
fore: the ‘‘observer’s Universe,’’ due to a lack of better
standards, is a constant curvature space section given by
the standard model. Calculating the average density with
the ‘‘Friedmannian volume’’ is, in this picture, consid-
ered as the actual source in Friedmann’s equation.

One of the reasons for this commonly held view is that
Newtonian cosmology is the familiar framework of
structure formation models, and the standard (constant)
curvature parameter is merely taken to determine the
‘‘background’’ FLRW model, while structures are de-
scribed within a Euclidean homogeneous space geometry.
The careful reader would object that the actual surveyed
volume of the spatial domain is not the volume of a
constant curvature FLRW domain, but —taking the cur-
vature fluctuations due to the inhomogeneities into ac-
count —is rather the volume of the bumpy geometry of
the surveyed region. There is an obvious difference be-
tween the bare density parameter (the actual material
mass density source), and the parameter obtained with a
‘‘Friedmannian bias.’’ We may, say, that the latter is
dressed by the geometrical inhomogeneities, which the
‘‘interpreter’’ imagines to be smoothed out, so that
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considered as an average over a homogeneous geometry.
We are going to focus on the relation between ‘‘bare’’ and
‘‘dressed’’ parameters.

Effective cosmological models.—To begin with let
us recall a central result in connection with the averaging
problem. It has recently been shown that a set of
‘‘generalized Friedmann equations,’’ which also incorpo-
rate structure inhomogeneities, govern the effective cos-
mological evolution [3]. Effective means that the
homogeneous-isotropic variables of the FLRW model
are replaced by their Riemannian volume averages on
some given spatial domain. In relativistic cosmology the
generalized Friedmann equations, restricted here to the
simplest matter model ‘‘irrotational dust’’ (more general
matter models are discussed in [4]), read
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where we have defined, on the averaging domain B0, the
regional Hubble parameter as 1=3 of the spatially aver-
aged rate of expansion �:
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d�g is the volume of the domain of averaging,
d�g is the Riemannian volume element associated with
the 3-metric gab of the hypersurface, R is the intrinsic
scalar curvature, h%iB0

:� MB0
V�1
B0

is the average matter
density, where MB0

� const, and d
dt denotes the time de-

rivative in a comoving frame. (Note that the zero sub-
script indicates that the averaging domain has the original
nonaveraged geometry; we shall later also refer to the
corresponding smoothed-out domain.)

The explicit source term QK
B0

, the kinematical back-
reaction, appearing in the above equations quantifies the
deviations of the average model from the standard FLRW
model. It is composed of two positive-definite fluctuation
terms (see [3]): first, shear fluctuations that tend to mimic
the presence of a (kinematical) dark matter component
decelerating the expansion and, second, expansion am-
plitude fluctuations that tend to mimic a time-dependent
positive cosmological term, an accelerating component
(‘‘quintessence’’).

Equation (2) shows that the averaged scalar curvature is
coupled to the ‘‘backreaction’’ dynamically, which is not
the case in the corresponding Newtonian set of equations
[5]. For QK

B0
� 0 the set of generalized Friedmann equa-

tions is closed, and we have from Eq. (2) hRiB0
/ V�2=3

B0

in agreement with the evolution of the spatially constant
curvature in the standard model.

Furthermore, in the general model, we may define
regional cosmological parameters as the following
scale-dependent functionals [3]:
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In contrast to the standard FLRW cosmological parame-
ters there are four players. In the FLRW case there is by
definition no kinematical backreaction, QK

B0
� 0. Hence,

the ‘‘effective cosmology’’ can be determined by a scale-
dependent and regional ‘‘cosmic quartet’’ [6] rather than
by a global ‘‘cosmic triangle’’ [1].

It is generally agreed that quantitative investigations of
the (kinematical) backreaction effect point towards two
results: first, the contribution of QK

B0
to the cosmic quartet

is quantitatively small in sufficiently large expanding
domains of the Universe (it may contribute significantly
on cluster scales and below [7] and may be attributed to
cosmic variance on large scales); second, the dynamical
influence of a nonvanishing backreaction on the other
(standard) cosmological parameters can—neverthe-
less—be large, in other words, the values of the standard
parameters found on a given hypersurface at an evolved
time are, in general, not related to their initial values
according to the FLRW model (for an investigation in
Newtonian cosmology see [8]).

Dressing cosmological parameters.—Equation (5)
forms the basis of a discussion of cosmological parame-
ters as they determine the theoretical model. They may
not be, however, directly accessible to observations.
Unlike in Newtonian cosmology, where the correspond-
ing equations have a similar form [5], it is not straight-
forward to compare the above relativistic average model
parameters to observational data. The reason is that the
volume averages contain information on the actually
present geometrical inhomogeneities within the averag-
ing domain. In contrast, the ‘‘observer’s Universe’’ is
described in terms of a Euclidean or constant curvature
model. Consequently, the interpretation of observations
within the set of the standard model parameters, if
extended by the backreaction parameter or not, neglects
the geometrical inhomogeneities that (through the
Riemannian volume average) are hidden in the average
characteristics of the theoretical cosmology. In other
words, an averaging procedure in relativistic cosmology
is not complete unless we devise a way to also average the
geometrical inhomogeneities. Since geometrical fields are
tensorial variables for which possible strategies of aver-
aging form the subject of considerable controversy in the
relativistic literature, there is some ambiguity in how such
an averaging could be implemented.

We have suggested an answer to this problem in [9],
and here we wish to exploit our results for comparing the
original averaged model of a surveyed region of the
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Universe with the geometrically smoothed-out model
which governs the interpretation of the observer’s data.
This turns out to be rather simple and physically clear, so
that we think that explaining the details of the smoothing
procedure is not mandatory in this Letter. It suffices to say
that the idea of smoothing out the geometrical inhomo-
geneities was implemented in [9] (see also [10] for a
preliminary attempt), by designing a smoothing flow on
the basis of the geometrical scaling properties of the
matter variables. Moreover, such a smoothing was imple-
mented on a regional and Lagrangian basis, i.e., the
metric and the matter variables are smoothed on a geo-
desic domain in such a way as to preserve its material
content. Such requirements characterize in a natural way
a Ricci deformation flow for the metric [9]. It is perhaps
interesting to note that such a flow is extensively studied
in the mathematical literature (see, e.g., [11]), where the
Ricci flow plays a basic role in mapping a bumpy 3-
geometry into a homogeneous geometry.

Let us highlight some results.
According to [9], the picture discussed in the introduc-

tion strictly depends on the ratio between two density
profiles defined in the averaging domain: one is naturally
associated with the actual matter content of the gravita-
tional sources, whereas the other is the mass density
corresponding to the matter content in the given region,
but now thought of as averaged over a geometrically
smoothed-out domain B with homogeneous geometry:

h%iB0
� MB0

=VB0
; h%i

B
� M

B
=V

B
: (6)

Our assumption of the regional smoothing was such that
the total masses are the same, so that we infer from (6)
that the average density measured with a ‘‘Friedmannian
bias’’ is dressed by a volume effect due to the difference
between the volume of a smoothed region and the actual
volume of the bumpy region:

h%iB0
� h%i

B
�V

B
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�: (7)

A further result that explicitly involves the geometrical
smoothing flows is formed by the relation between the
constant regional curvature in the smoothed model (e.g., a
FLRW domain) and the actual regional average curvature
in the theoretical cosmology:

R
B
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B
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where we have introduced a novel measure for the
backreaction of geometrical inhomogeneities cap-
turing the deviations from the standard FLRW space
section, the regional curvature backreaction: QR
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3 gabR
being the trace-free part of the Ricci tensor Rab in the
hypersurface. QR

B0
, built from scalar invariants of the

intrinsic curvature, appears to have a similar form as
the ‘‘kinematical backreaction’’ term (that was built
from invariants of the extrinsic curvature). It features
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two positive-definite parts, the scalar curvature ampli-
tude fluctuations and fluctuations in metrical anisotro-
pies. Depending on which part dominates we obtain an
under- or overestimate of the actual averaged scalar cur-
vature, respectively. � parametrizes integral curves of the
smoothing flow for the metric, so that the expression
above indeed refers to the explicit form of this flow.
Notwithstanding, this term may be estimated by the
actual curvature fluctuations, since the Ricci flow acts in
a controllable way such that the maxima of the curvature
inhomogeneities are monotonically decreasing during the
deformation.

From Eq. (8) we can understand the physical content of
geometrical averaging. It makes transparent that, in the
smoothed model, the averaged scalar curvature is dressed
both by the volume effect mentioned above, and by the
curvature backreaction effect itself. The volume effect is
expected precisely in the form occurring in (8), if we
think of comparing two regions of distinct volumes, but
with the same matter content, in a constant curvature
space. Whereas the backreaction term encodes the devia-
tion of the averaged scalar curvature from a constant
curvature model, e.g., a FLRW space section.

The bare quartet.—The results discussed above allow
us to relate the actual parameters (4) to the values of such
parameters obtained as regional averages on a homoge-
neous geometry by the smoothing procedure. We have
seen that a Friedmannian bias in modeling the real
observed region of the Universe with a smooth matter
distribution evolving in a homogeneous and isotropic
geometry, inevitably ‘‘dresses’’ the matter density h%i

B
,

the Hubble parameter H
B

, and the scalar curvature R
B

with correction factors. Correspondingly, an observer
with a Friedmannian bias would interpret his measure-
ments in terms of the dressed cosmological parameters:
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obeying M
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The latter equation follows from our assumption that the
smoothing procedure requires one to respect the Hamil-
tonian constraint of Einstein’s equations. Introducing the
dimensionless parameters

� :�
V
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; � :�
H2

B

H2
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QR

B0
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B

; (11)

we can formally study fractions of bare and dressed
parameters (making sure that the denominators are non-
zero, which is the case in generic situations):
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The above listed relations appear to provide a formal
recipe for interpreting the cosmological parameters. Let
us illustrate them by considering mixed fractions of vari-
ous cosmological parameters in order to eliminate, say,
the fraction of the Hubble parameters �, and conclude on
the values of the others:
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Reflecting the contemporary view on the cosmological
parameters, we may consider a region of the Universe on a
sufficiently large scale of the order of 1 Gpc=h. The
(possibly also dressed) observations of the first doppler
peak in the cosmic microwave background fluctuations at
the ‘‘Friedmannian scale’’ � 100 Mpc=h favor an ap-
proximately vanishing average curvature R

B
� 0. Let

us, for simplicity, approximate both the bare and the
dressed kinematical backreaction parameters by zero. If,
again for simplicity, we approximate also the curvature
backreaction parameter by zero, � � 0 (in the sense that
there are curvature fluctuations present, but the two
positive-definite parts compensate each other), we would
have an approximately vanishing average curvature also
in the actual cosmological model. Then, the standard
argument requires compensation of the observed matter
content (including dark baryonic and possibly dark non-
baryonic matter components), obeying the commonly
agreed upper bound M

B
& 0:3 with a cosmological

term �
B
� 0:7. For the bare parameters we then obtain

M
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0:7�, which yields the estimate:
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This certainly oversimplified example shows that, instead
of postulating the presence of a large cosmological term,
the bare mass parameter could still acquire values close to
1, if ‘‘undressed,’’ and if the volume fraction � is sub-
stantially greater than 1. The second relation in Eq. (12)
then shows that the actual Hubble parameter would be
larger than the dressed one.

A quantitative estimate that gives us an idea of the
order of magnitude of such an effect has been worked
out by Hellaby [12] comparing spherically symmetric
with FLRW solutions. He employs ‘‘volume matching’’
as proposed by Ellis and Stoeger [13] which should,
however, amount to a similar effect as a comparison of
the models at equal mass. He finds that the spatial aver-
ages of the density profiles as compared with the corre-
031101-4
sponding (fitted) FLRW parameters yield errors in
the range 10–30% for realistically modeled clusters
and voids.

It appears that the interpretation of relativistic cosmo-
logical parameters is far from trivial, given that we
neither touched on the issue of averaging on the observer’s
light cone in which case the discussed effect interacts
with the time evolution of the model (compare the de-
tailed suggestion in [13]), nor did we study the smoothing
itself in a dynamical setting. As the present discussion
shows, a thorough investigation of volumes of realistic
cosmological slices as the ‘‘simplest’’ quantity would
considerably enhance our theoretical background to ap-
proach observational data. As in other fields such as solid
state physics, where the study of surface roughening is
well developed, cosmology could face the necessity of
understanding geometrical structure formation, as it had
to face the necessity of understanding structure formation
on a homogeneous geometry.
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