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We propose a new scaling law for global kinetics of the stoichiometric reaction A� B! P in
unsteady, transitional flows. We find in the nonlinear flow regime the decay as �t�� where � is related
to a space-time scaling parameter  as � /  m, for the considered parameter range m � 0:067. In the
linear flow regime, we find that the maximum is � ’ 2=3 for  ’ 1. The proposed scaling law should be
useful for linking dynamical subgrid processes with reaction kinetics in a variety of transitional flow
systems.
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of the vortex shifts between a dynamical phase where the gradients [15]. We instead rely on a Lagrangian modeling
The dynamical impact of a flow field on bimolecular
kinetics is of considerable interest in applied science such
as combustion technology [1] and atmospheric chemistry
[2,3], as well as from a more fundamental perspective
[4–6]. The classical solution of A� B! P, where A and
B are two species and P is an inert product, is

d�A	
dt

� �k�A	�B	; (1)

where k is the reaction rate and �
	 is the concentration
defined over an elementary support volume, or area.
Equation (1) is based on the assumption that the mixture
is well stirred within the support volume, throughout the
reaction process; this assumption leads to a decay of the
type �A	 / t�� with � � 1 for large t.

It is well established that bimolecular reactions such as
(1) spontaneously generate clusters of A (respectively, B)
in pure diffusive systems [7]. Since reactions take place
only at the border of each cluster, these concentration
fluctuations lead to a lower global decay rate compared
to the classical � � 1=2 decay [7].

In a more general situation where A and B are subject to
additional advection (e.g., in a hydrodynamical context),
the issue is less clear. Flows such as dilational flows [8],
statistical mixing by tossing [9], or fully developed three-
dimensional turbulence, act as efficient mixers and any
cluster is rapidly destroyed by mixing leading to restora-
tion of the classical � � 1 decay.

There are important classes of flows, however, where
the mixing is less efficient and varies in space. For in-
stance, inviscid two-dimensional (2D) flows are generally
slow mixers on a global scale, but locally develop spots
with intense mixing [10], resulting in reaction kinetics
which varies over the domain. Such flows are character-
ized by the existence of one or more long living coherent
vortex structures separated from the embedding flow field
by sharp vorticity gradients. The evolution of such vorti-
ces is due to the interaction with the surrounding field and
typically leads to an unsteadiness of the vortex: the state
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vortex undergoes strong deformation leading to ejection
of vortex filaments and a quasisteady state with small
deformation [11]. Ocean eddies and the stratospheric
polar vortex are examples of flows displaying such
characteristics.

Previous studies have focused on bimolecular kinetics
in a diffusive field [12], steady and homogeneous isotropic
turbulence [4], steady shear flows [5], and von Karman
vortex street [6]. Pure mixing properties in nonclassical
flows have also been examined [13]. There are important
issues related to the effect of combined dynamics and
kinetics, however, which have yet to be resolved. One
such issue is the scaling of global kinetic rates under
transitional flow regimes.

In this Letter, we propose a new spatial and temporal
scaling law for highly structured flows that undergo tran-
sition from a deterministic configuration to a chaotic
state. We quantify for the first time global decay rates
on the system scale, as functions of combined kinetic and
dynamic mixing on a local scale, for unsteady, transi-
tional flows. A new relationship for the decay rate ex-
ponent is established as a function of a single scaling
parameter.

As a prototype for transitional flows, we consider a
compressible, quasigeostrophic vortex column placed in a
2D laterally unbounded domain. The vortex is compres-
sible in the sense that the density varies with height,
air�z� / exp��z�, and it is vertically restricted by the
no-flow condition at the top and bottom. Furthermore,
there is an external forcing in the form of a background
mean velocity field U and a variable vortex anomaly
beneath the column. The forcing induces a perturbation
which amplifies as it propagates up through the vortex due
to decreasing density.

The flow evolution is related to the vorticity distribu-
tion by q � r2 , where  is the stream function and q is
the vorticity [14]. Conventional grid-based or spectral
techniques are not well suited for high-resolution studies
of this flow class due to their inability to maintain sharp
2003 The American Physical Society 028303-1



FIG. 1. The top layer of the vortex with particles seen from
above at t � 10. Initially, the vortex is circular with a radius L
(L � 1=6 of the box width). Nonlinear wave breaking, induced
by the forcing, creates filamentary structures which become
rapidly thinner and are ultimately removed from the vortex
body. Because of random fluctuations, some particles have
crossed the contour and moved with the external flow field.
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technique which integrates the vortex contours directly.
The method, referred to as contour dynamics (CD), can
be formulated for any 2D flow field which possesses a
generalized vorticity invariant q. CD has been previously
used for examining fundamental properties of general 2D
flows [11,13] as well as in a geophysical context [15]. We
emphasize that a high-resolution model is a requirement
for accurately tracking the history of tracer particles and
resolving small-scale reactions.

The particular form of q depends on the flow configu-
ration; for a vortex column with topographic forcing, it is
q � r2 � 1


@
@z ��z� @ @z �� f0��x�, where  is the den-

sity, �z� and f0 are flow specific parameters, and �
quantifies horizontal geometry and amplitude of the
underlying forcing. The no-flow condition in the vertical
direction gives D

Dt �
@ 
@z� � 0 at z � H and D

Dt �
@ 
@z �

f0��x�� � 0 at z � 0. The lower boundary condition is
equivalent to choosing the surface z � ��x� to be an
isentrope, thus, by specifying � we can perturb the
vortex column. The velocity field generated by the vortex
is now obtained by integrating the vorticity within the
vortex column as [16]

u�x� � �
Z H

0
dz0�z0�q�z0�

I
�
G�x0;x�dx0; (2)

where q is the vorticity jump across the vortex boundary
�, x is a material coordinate, G � �K0��jx�x0j�=2� is
the Green function for a quasigeostrophic fluid, K0 is the
modified Bessel function, and � is a parameter. The
model is extended with a surgery process [15] which
involves removal of filamentary vorticity structures be-
low a given cutoff scale �. We consider the vortex when
�f0��x� � 1:2q with q � 2:0 and U � �0:12; 0�. Even
though the forcing is stationary, it generates an unsteadi-
ness and a nonreversible deformation which qualitatively
mimics the dynamics of a winter time stratospheric polar
vortex [16]. Suitable normalization parameters (that are
used throughout) are related to the undisturbed vortex:
one rotational period T for time and radius L for space.

At t � 0, dynamically inert particles A and B are
distributed over an isentropic surface at the top of the
vortex, following a uniform distribution. The location of
each particle is given by X�t� �

R
t
0 u�x�t

0�	dt0 � Ut� �,
where � � �2D�t�1=2e, D is a normalized diffusion co-
efficient, and e is a random vector with two components
drawn from a normal distribution with zero mean and
unit variance. The random displacement � quantifies the
effects of motions at subgrid scales, consistent with a
diffusion process, hence � is of zero mean and isotropic
variance 2D�t. A snapshot of the vortex and particle
distribution at t � 10 is illustrated in Fig. 1.

Let the bimolecular reaction be dependent on two
parameters,  and �, where  � jxA � xBj is the distance
between two particles A and B, and � is a temporal
parameter. There are two effects we wish to emulate:
the impact of spatial resolution on the global reaction
rate and the impact of chemistry as quantified by the
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local kinetic rate 1=�c. Let the probability of A and B
particles reacting in the flow field be defined by

ProbfA� B! Pg �
�
1 if  � c ^ � � �c;
0 otherwise;

(3)

where c and �c are specified. We can view c as a critical
radius of an unit area A�c�

i � �2
c (i � A;B) with a

particle positioned at the center. When  � c, two areas
overlap as AAB � AA \AB, where AAB can be inter-
preted as a support area for the chemical reaction given in
material coordinates. The time �c characterizes local
(intrinsic) reaction kinetics where the rate is �1=�c.
The rule (3) is a material equivalent of what is commonly
used in lattice systems, where particles, say A, jump from
one lattice site to another, and a reaction depends on
whether the new location is occupied by a B particle or
not [17].

For �c � �t (which equals one numerical time step),
the discrete reaction (3) proceeds as follows. A neighbor-
hood of radius c is defined for every particle A and B. If
one particle of opposite type is found within, both par-
ticles will react and become P. If there is more than one
particle of opposite type within a radius c, only the
nearest particle participates in the reaction.

For �c � n�t (where n > 1 is an integer), the area
around a particle is scanned for possible reactants; par-
ticles which are found will be tracked during the next
time step. If no opposite particle is found in the area, no
reaction will occur. This process continues until � � �c
when the particles react. If a particle pair initially is
sufficiently close, but diverge such that  > c during
the time span �t < � < �c, the encounter process will
terminate and the particle pair will continue as A
(respectively, B).

In Fig. 2 we exemplify a typical decay process for
different values of c with a relatively rapid reaction
(�c � 0:025). The curves of Fig. 2 are qualitatively
028303-2
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FIG. 2. Fraction of particles A remaining in the system, and
departure from circularity }, as functions of time, for �c �
0:025. The arrow is directed toward increasing c in the range
0.005–0.1. The initial drop for t � �c strongly depends on the
initial particle distribution. The relatively slow decay of A
particles characterizes the linear flow regime with } � 0. A
strong increase of } is indicative of the nonlinear flow regime,
resulting in more rapid decay. Position of the breakpoint
between regimes is around t � 1 and depends on c and �c.
The curves are plotted from t � 0:3 which is the maximum �c
considered.
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consistent with results from previous studies of bimolec-
ular kinetics in simpler flows systems, which have re-
vealed the existence of multiple regimes for the decay
rate [4]. These regimes are typically characterized by a
power-law dependence where the decay rate depends on
which process is dominant.

To highlight the link between global decay rate and
flow dynamics, we also plot in Fig. 2 a time-dependent
measure } defined as } � 1=4

H
� r

4d$�A2=2� [13,18].
This measure quantifies the deformation of the vortex
induced by the flow dynamics, as the normal mean-
square displacement of the vortex boundary � from a
circular shape with area A. The value } � 0 is based
on a linear combination of vorticity and angular momen-
tum (which are conserved for this flow), whereas } � 0 is
applicable for a circular patch of vorticity [18]. Evolution
of } clearly distinguishes two regimes for global decay:
linear flow with } � 0 up to t � 1 and relatively slow
decay, and nonlinear flow regime in the range 1 & t < 10
with a steep rise in } and more rapid decay (Fig. 2).

Let Pe � 4�2L2=DT denote the global Peclét number,
where 2�L=T is the characteristic (rotational) velocity
and 2�L is the associated length; so defined, Pe provides
a convenient measure of diffusive displacement relative to
advective displacement. In order to study the impact of
linear and nonlinear flow regimes on global kinetics, we
introduce a dimensionless number  by combining the
reaction parameters c and �c with Pe as

 �
2
cPe

�c
�

4�22
c

�cD
: (4)
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The decay is examined as a function of  in the linear
(for t & 1) and nonlinear flow regime (1 & t � 10).
The decay properties are examined for the parameter
ranges of 0:005 � c � 0:1, 0:025 � �c � 0:3, and 20 �
Pe � 8900.

Consider the limits of  and �. A small value of  
implies that c is small and therefore the probability that
a reaction will occur is small [this follows from (3)];
consequently, the decay exponent � is small and �! 0
as  ! 0. The probability that the interparticle distance
satisfies  < c during � � �c, initiating a reaction, de-
creases with a diminishing c. At the other end of the
parameter range, where 2

cPe � �c, the impact of dy-
namics decreases as the effect of fluctuations on scales
below c diminishes.

The decay exponent is naturally bounded as
0 � � � 1, with � � 0 applicable when no reaction takes
place and � � 1 applicable when particles are confined in
a perfect mixer, reacting as soon as � � �c. There is a
distinct breaking point during the linear regime, t & 1,
where � reaches a maximum for  � 1, hence we have
maximal decay rate when �c=2

c ’ Pe [Fig. 3(a) ]. It is
also apparent that the system is an imperfect mixer with
�max ’ 2=3 [Fig. 3(a)]. The nonlinear regime is clearly
different [Fig. 3(b)], with � positively correlated to  as

� �

8<
:
0  <  l
 m  l< < u

1  > u

; (5)

where for the considered parameter range we have
m � 0:067.

The piecewise formulation of Eq. (5) follows from the
definition of the dimensionless number,  . The lower
limit  l mimics conditions when effectively no reaction
takes place, because the reaction distance c is too small
and/or reaction time is too large �c, hence �! 0. The
upper limit of (5) also follows from (3): A large value of
c implies that two particles can react at a relatively large
distance. In the limit, when c equals the domain size, the
system mimics a batch reactor, thus for  larger than  u
we have convergence to the classical case, �! 1, i.e.,
decay as t�1. An increasing  essentially leads to a
complete recovery of the classical � � 1 decay in the
nonlinear regime [Fig. 3(b)].

For comparative purposes, the bimolecular reaction (3)
was considered in the same domain with particles A and
B subject only to random fluctuations (diffusion), i.e.,
X � �. In such a case, we found an analogous pattern
for  and � as that seen in Fig. 3(a), i.e., a distinct
breakpoint and no apparent correlation between � and
 [19]. For (5) to be applicable, therefore, the system has
to maintain sufficient mixing.

Chaotic behavior of a vortex structure can be initiated
in a variety of ways, for instance, with forcing functions
that are either time dependent or have spatial variation. A
forcing that produces efficient mixing must lead to
028303-3
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FIG. 3. The rate exponent � as a function of ln� � for
(a) linear flow regime and (b) nonlinear flow regime. A
least-squares fit with 95% confidence interval is plotted in
(b), � /  0:067�0:007, where 0:007 is the standard deviation of
m; the correlation coefficient in (b) is 0:9.
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increasingm. In the limit, an ideal mixer which instanta-
neously tosses A and B reactants around leads to a large
m, while a forcing that generates no mixing is consistent
with a linear flow regime. In our calculations, we chose as
simple as possible forcing which maintains key features
of nonlinear and transitional flows, such as increasing
unsteadiness over time, and a continuous filamentation.

In conclusion, we have identified  (4) as the single
controlling parameter for the decaying exponent � in the
nonlinear flow regime. It combines spatial and temporal
scales naturally arising in problems involving both
kinetics and dynamics. The scaling law was shown to
be robust with respect to random fluctuations for the
considered parameter range. For the linear flow regime,
we found that the decay rate has a maximum of � ’ 2=3
for  ’ 1. The unique character of the semianalytical CD
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simulation tool is in that it can resolve scales even for
realistic unsteady flow systems, such as the polar vortex.
Previous studies of bimolecular reactions have been
either in lattice structures [12,17] or in simpler flows
regimes [1,4–6]. Current results verify (5) for a 2D
quasigeostrophic flow only. However, given the features
of this flow which are characteristic of transitional flows
in general, and the unprecedented particle tracking accu-
racy of the CD algorithm, we hypothesize (5) to be
applicable for a wider class of transitional flows with
coherent structures.

Typical applications with grid-based models (such as
global circulation models) introduce their own scales due
to restricted resolution. A resulting effect is that in most
cases small-scale dynamics are unresolved and subgrid
structures act as perfect mixers; this in turn can lead to
incorrect parametrization of reaction kinetics [3,20]. The
parameter  in (4) relates the spatial resolution c, tem-
poral scales of chemical reactions (�c), and subgrid mix-
ing processes quantified by Pe, arising, for instance, in
grid-based models. The scaling law (5) presented in this
Letter can then become a useful tool for evaluating the
parametrization of kinetic reactions, in a wide range of
unsteady and transitional flows.
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