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Single-Molecule Kinetics with Time-Dependent Rates: A Generating Function Approach
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A theoretical strategy for calculating the statistical properties of time series generated by single
molecule measurements is presented. Emphasis is placed on the case where observable states inter-
convert via rate ‘‘constants’’ exhibiting stochastic time dependence. Such is the case for measurements
of single fluorophores coupled to biomolecules undergoing conformational fluctuations [H. P. Lu,
L. Xun, and X. S. Xie, Science 282, 1877 (1998)]. In contrast to previous studies, we focus on the
number of fluorophore blinking events occurring within a given amount of time as our stochastic
variable. This formulation allows for an elementary analysis within the generating function framework.
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[The precise meaning of this equation may be found in
Eq. (3).] It is generally assumed that the time-dependent
rate constants are themselves stationary stochastic pro-

i�0

To proceed, it is convenient to express P �s; t� as a sum of
Chemical kinetics is a powerful tool for predicting the
dynamic behavior of macroscopic chemical mixtures [1].
The advent of single molecule experimental techniques
[2,3], however, has led to the study of chemical systems in
the completely microscopic regime. Though kinetic equa-
tions may be generalized and are only slightly compli-
cated by the statistics of small numbers [4,5], experiment
has shown [6] that it is not necessarily easy to guess the
relevant microscopic states that manifest themselves in
single molecule measurements. Molecules may have
many configurational states and interconversion between
such states may or may not be activated processes. The
detailed nature of single molecule measurements has
brought these previously ‘‘hidden’’ states to the fore,
though it remains difficult to infer the properties of
such hidden states directly from experimental data.

Observable single molecule properties are typically
confined to spectroscopic signatures [6–8]. For example,
experiment may only be sensitive to whether a fluorophore
on the molecule is or is not fluorescing under irradiation
(henceforth referred to as being ‘‘ON’’ and ‘‘OFF’’) [6].
One might naively expect the kinetic equation,

ON ! 
kOFF

kON
OFF; (1)

to hold for this case, implying Markovian jumping be-
tween ON and OFF states with rate constants kOFF and
kON. Experimentally, the observed behavior is not gener-
ally Markovian [6]. One way to account for this non-
Markovian behavior is to generalize the rate constants
of Eq. (1) to be time dependent, implying a generalized
kinetic equation,

ON ! 
kOFF�t�

kON�t�
OFF: (2)
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cesses reflecting thermal fluctuations (the hidden states)
coupled to the blinking kinetics. Such is the approach
many groups [9–16] have used to study deviations of
single molecule trajectories from Markovian behavior
(though more fundamental approaches are possible [17]).

This Letter presents expressions for the statistical prop-
erties of single molecule spectroscopy trajectories when
the observable states of the molecule interconvert via
time-dependent rate processes. Statistical moments and
the generating function for blinking events are expressed
in terms of the stochastic properties of the time-
dependent rate constants discussed above. Since the gen-
erating function provides a complete description of a
countable stochastic process, our formulation provides
an exact solution for the behavior of single molecules
evolving with time-dependent rates and should
prove useful in the interpretation of single molecule
experiments.

For the moment, consider systems that begin OFF at
time t0. We would like to determine the probabilities
P0�t�, P1�t�, P2�t�, etc. that the molecule does not turn
ON before time t, the molecule turns ON before time t,
and stays ON through time t, the molecule turns ON and
OFF once before time t, etc. Given these definitions
(others are certainly possible), it is clear that the index
n refers to the number of ON to OFF and OFF to ON
events that occur within the interval �t0; t�. The Pn�t�

0s
evolve in time as

_PP0�t� � 	kON�t�P0�t�;
_PP1�t� � kON�t�P0�t� 	 kOFF�t�P1�t�;
_PP2�t� � kOFF�t�P1�t� 	 kON�t�P2�t� . . . :

(3)

The generating function, P �s; t�, for the sequence fPn�t�g
is defined by

P �s; t� �
X1

Pi�t�s
i; P �s; t0� � 1: (4)
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contributions coming from systems in the ON state and
systems in the OFF state (contributions from odd and
even values of i, respectively, for the present initial con-
dition):

P �s; t� 
 P�s; t� �Q�s; t�;

P�s; t� �
X

i�0;2;...

Pi�t�si; Q�s; t� �
X

i�1;3;...

Pi�t�si: (5)
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Using these definitions, we write coupled equations for
the evolution of P�s; t� and Q�s; t�:

_PP�s; t� � 	kON�t�P�s; t� � skOFF�t�Q�s; t�;
_QQ�s; t� � skON�t�P�s; t� 	 kOFF�t�Q�s; t�:

(6)

In general, Eq. (6) admits the solution in a formal sense
through use of a time ordered exponential,
�

P�s; t�
Q�s; t�

�
� T̂T exp

"Z t

t0

d

�
	kON�
� skOFF�
�
skON�
� 	kOFF�
�

�#�
1
0

�
; (7)

where the operator T̂T time orders the matrices from late to early proceeding from left to right.
We now specify a case that allows the time ordering of Eq. (7) to be dispensed with. In particular, we assume that

kON�t� � KeqkOFF�t�. This assumption corresponds to a fluctuating reaction barrier model. The mathematical simpli-
fication of having only one time-dependent rate is that the matrices in the exponent of Eq. (7) commute with one another
at all times so time ordering is not necessary. Also, since Keq is constant it makes sense to speak of the equilibrium
distribution for ON and OFF states, so we may generalize Eq. (7) to an initial condition where the system is OFF with
probability 1=�1� Keq� and ON with probability Keq=�1� Keq� as expected by detailed balance. Explicit diagonaliza-
tion leads to the expression

hP �s; t�i �

*
exp

"
	�Keq � 1� � f

2

Z t

t0

kOFF�
�d


#+	
1

2
�

1

2f
1

�1� Keq�
��Keq 	 1�2 � 4Keqs�




�

*
exp

"
	�Keq � 1� 	 f

2

Z t

t0

kOFF�
�d


#+	
1

2
	

1

2f
1

�1� Keq�
��Keq 	 1�2 � 4Keqs�



;

f�Keq; s� 

�������������������������������������������
�Keq 	 1�2 � 4Keqs2

q
: (8)
We have introduced angular brackets, h� � �i, to signify
that we are most interested in the generating function
averaged over a stochastic process kOFF�t�. Removing all
angular brackets from Eq. (8) leads to a perfectly valid
expression for a fixed time dependence of kOFF�t�.
Averaging over the process, kOFF�t� corresponds to the
experimental measurement of hP �s; t�i via an ensemble of
single molecule systems.

Equation (8) requires the evaluation of he
�
R

t

t0
kOFF�
�d


i
for constant �. For sufficiently simple stochastic pro-
cesses, such quantities are analytically computable. If,
for example, kOFF�t� hops in a Markovian manner be-
tween two values (ka and kb) with dynamics governed by
the master equation

�
_PPa�t�
_PPb�t�

�
�

�
	!ab !ba

!ab 	!ba

��
Pa�t�
Pb�t�

�
; (9)

then he
�
R

t

t0
kOFF�
�d


i is given by [18]

�1; 1� exp
�
�t	 t0�

�
�ka 	!ab !ba

!ab �kb 	!ba

���
pa

pb

�
;

(10)

with pa � !ba=�!ab �!ba� and pb � !ab=�!ab �
!ba�.
Or, for a rate constant that depends quadratically upon
a Markovian Gaussian process such as kOFF�t� � �r2�t�,
where r�t� is the Ornstein-Uhlenbeck process [5],

P�r; tjr0; t0� �

�������������������������������������������
1

2��2�1	 e	2��t	t0��

s

� exp

�
	
�r	 r0e

	��t	t0��2

2�2�1	 e	2��t	t0��

�
; (11)

then (fluctuating bottleneck model [19])

he
�
R

t

t0
kOFF�
�d


i �

����������������������������������������������������������������
4X

�X� 1�2 	 �X	 1�2e	2�X�t	t0�

s

� exp

�
	
�
2
�X	 1��t	 t0�

�
;

X 


������������������������
1	

4��2�
�

s
: (12)

Calculation of the generating function reduces to substi-
tution of the forms (10) and (12) (or similar quantities for
different statistical models) into Eq. (8). Non-Markovian
Gaussian processes may also be treated under this formal-
ism utilizing the results of Wang and Wolynes [9,20,21].
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FIG. 2. Similar to Fig. 1, but with constants chosen to reflect
slow modulation of blinking rates as follows. Dashed lines
represent the two state model, and solid lines the Gaussian
(fluctuating bottleneck) model. Gaussian model: Keq � 2, � �
1, � � 5, �2 � 5. Two state model: Keq � 2, !ab � 0:5211,
ka � 4:0133, kb � 84:5615, pa � 0:7395. Discrepancies in the
generating function are clear for this case and reflect the fact
that the rate constants are evolving slowly enough to present
statistical signatures that are distinct for the two different
models.
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FIG. 1. Generating functions over the range s 2 �	1; 1� for a
series of time points. Note the logarithmic scale and we have
taken t0 � 0. The curves correspond to both the two state and
Gaussian (fluctuating bottleneck) models. Constants character-
izing the two models were chosen to maximize statistical
similarity (see text) and are as follows. Gaussian model: Keq �
2, � � 1, � � 0:2, �2 � 0:2. Two state model: Keq � 2, !ab �
0:1913, ka � 0:0216, kb � 0:2139, pa � 0:9044. The indistin-
guishability of the two functions at the displayed resolution
reflects that we are in the ‘‘motionally narrowed’’ limit of fast
modulation of the rate constants. As modulation gets very fast,
the system blinks with effective time-independent rate con-
stants that have been dynamically averaged.
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We shall not discuss such a case in the present work,
though the extension is straightforward.

In Figs. 1 and 2, we display a time series of generating
functions, hP �s; t�i, for two different cases corresponding
to slow and fast rates of blinking (slow and fast relative to
the time scale of blinking rate modulation). Each figure
displays generating functions for both the two state hop-
ping model and Gaussian model discussed above. The
constants for the two models were chosen to maximize
similarity in the following sense. The Gaussian model is
specified by the four constants defined above: Keq, �, �,
and �2, whereas the two state model is specified by the
five constants: Keq, !ab, pa (the equilibrium probability
that kOFF � ka), ka, and kb. (The constants pb and !ba are
not independent, being related to other constants through
normalization of probability and detailed balance.) For a
given set of constants in the Gaussian model, we infer the
closest two state model by requiring that the two models
possess identical values for Keq, hkOFFi, hkOFF�t�kOFF�0�i	
hkOFFi

2, and keff [the effective exponential decay constant
associated with the s � 0, t! 1 limit of Eq. (8)]. Note
that both the two state and bottleneck models possess an
autocorrelation function for kOFF�t� that decays exponen-
tially. This means that the amplitude and rate of decay of
the autocorrelation function specify two constants;
hence, the four constraints above actually determine the
two state model unambiguously. The particular numerical
028302-3
values chosen and inferred from this process may be
found in the figure captions (inferred values have been
truncated to four decimal places).

The concave shape of the generating function at finite
times makes sense since hP �1; t�i � 1 at all times by
normalization of probability, hP �0; t�i 
 P0�t� must ap-
proach zero as t gets large since all molecules must
eventually blink, and hP �	1; t�i 
 P�1; t� 	Q�1; t�
must tend to �1	 Keq�

2=�1� Keq�
2 at long times. The

differences in the generating functions demonstrate that
there are statistical differences in the blinking sequence
for different stochastic processes. Not surprisingly, these
differences are somewhat more apparent when rate modu-
lation is slow relative to the rate itself. Fast modulation of
the rate is closely analogous to ‘‘motional narrowing’’
[22] in spectroscopy. In this limit it becomes difficult to
distinguish underlying dynamics because the observation
can only make out a single, dynamically averaged, rate.
Slowly modulated systems display clear differences in the
generating function and related quantities (see below)
even when the two processes are chosen to be as statisti-
cally similar as possible.

Perhaps the most appealing facet of the generating
function formalism is the ease in which statistical aver-
ages are calculated simply by taking derivatives with
respect to s and evaluating at s � 1 [5]. Though the
algebra quickly become tedious, it is theoretically pos-
sible to derive all moments for the number of blinking
events occurring within a given amount of time. The
expectation value and variance, for example, are given as
028302-3
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hNi�t	 t0� � 2
Keq

1� Keq

*Z t

t0

kOFF�t1�dt1

+
�hN2i 	 hNi2��t	 t0�

� hNi�t	 t0� �
4K2

eq

�1� Keq�
2

Z t

t0

dt1
Z t

t0

dt2�hkOFF�t1�kOFF�t2�i 	 hkOFF�t1�ihkOFF�t2�i�

�
2Keq�1	 Keq�

2

�1� Keq�
3

*Z t

t0

kOFF�t1�dt1

+
	

2Keq�1	 Keq�
2

�1� Keq�
4

"
1	

*
exp

 
	�Keq � 1�

Z t

t0

kOFF�t1�dt1

!+#
: (13)
Note that the variance differs significantly from the
Poissonian value of hNi�t	 t0�. The first term beyond
Poissonian behavior results from the dynamic nature of
kOFF�t� and is present even when Keq � 1. The last two
terms result from the asymmetry between on and off
events. In principle, one can derive results for the skew-
ness, kurtosis, etc. by taking higher and higher deriva-
tives, but the expressions will soon become unwieldy (and
tedious to derive). In applications where it is necessary to
compare high order moments, it may prove easier to
differentiate numerically.

Our procedure of maximizing similarity between the
two model processes has ensured that hNi�t� is identical
for both the Gaussian and two state models. The variances
are nearly equal as well, differing only in the last term.
Though space constraints prevent us from plotting these
variances here, we note that the variances do differ over
the time scale of rate modulation, but the magnitude of
this difference is small in comparison to the variance
itself (� 10	3 relative magnitude for the slow modula-
tion case and �10	5 for the fast modulation). Dif-
ferentiation of these two models on the basis of variance
would require excellent statistics. Higher order moments
can provide clues to statistical behavior as well [9].
Another possibility, suggested by the present work, is to
generate experimental generating functions to compare
directly with theory.

In conclusion, we have derived a general solution
[Eq. (7)] for the statistical behavior of blinking events
in single molecule measurements. The special case where
the temporal behavior of the on and off rates is identical to
within a constant was developed and led to expressions
that are analytically tractable for common model sto-
chastic processes. Comparison of generating functions
and derived expressions for two different (yet maximally
similar) stochastic processes has shown how variation in
the stochastic behavior of rate constants will affect blink-
ing statistics. Insofar as the generating function provides a
028302-4
complete description of a countable stochastic process
(the number of blinking events in our study), the present
formulation seems to be a particularly appealing way to
think about single molecule kinetics.
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