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Non-Abelian Holonomies, Charge Pumping, and Quantum Computation
with Josephson Junctions
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Non-Abelian holonomies can be generated and detected in certain superconducting nanocircuits.
Here we consider an example where the non-Abelian operations are related to the adiabatic charge
dynamics of the Josephson network. We demonstrate that such a device can be applied both for adiabatic
charge pumping and as an implementation of a quantum computer.
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FIG. 1. (a) Elementary Josephson network for the investiga-
tion of non-Abelian holonomies. Note that an asymmetric
SQUID loop cannot be switched off completely [16]. Since
JM � 0 may be desirable for quantum computation, the
SQUID is designed such that this condition can be satisfied.
(b) Pumping cycle for three islands. Starting from P �
adiabatic charge pumping and allows one to implement
solid-state holonomic quantum computation. Some parts

�1=2; 1=2� and adiabatically following the drawn path, the
gate U � ei��=2��y can be achieved.
If a quantum system is prepared in a superposition of
two states, a physical observable associated with this
system can exhibit oscillatory behavior depending on
the relative phase of the two states. Interference can be
induced during the dynamical evolution of the system; in
this case we refer to the accumulated phase as the dy-
namical phase. Interference can also be of geometrical
nature if the parameters (coupling constants, external
fields, . . . ) of the Hamiltonian are varied cyclically [1].
After Berry’s original work, considerable attention has
been devoted to the interpretation, generalization, and
detection of geometric phases [2]. An important general-
ization is when the adiabatic cyclic evolution involves a
degenerate eigenspace of the Hamiltonian. In this case, it
has been shown by Wilczek and Zee [3] that the evolution
over a closed path does not result in a phase change, but it
leads to a superposition of the degenerate eigenstates and
the holonomy acquires a non-Abelian structure. Origi-
nally investigated in nuclear quadrupole resonance [4],
more recently it was shown that non-Abelian holonomies
occur in quantum optics systems [5,6].

Apart from its fundamental importance, geometric
interference has interesting applications in the field of
quantum information processing [7,8]. Implementations
of quantum computers thus far include optical systems
and liquid-state NMR [9] as well as solid-state devices
based on superconductors [10] and on semiconductors
[11]. Recently, it has been shown that quantum computa-
tion can also be implemented by geometric means (geo-
metric quantum computation) using Abelian [12] as well
as non-Abelian [6,13] holonomies.

Non-Abelian holonomies can also appear in the quan-
tum dynamics of superconducting nanocircuits [14]; this
is what we will show in this work. There are various
interesting aspects associated with this analysis. In addi-
tion to their possible detection, which is intriguing
by itself, the existence of non-Abelian holonomies in
superconducting nanocircuits leads to a new scheme for
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of our proposal are purposely speculative. We believe,
however, due to the rapid development in the control of
artificial two-level systems in solid-state devices [15], the
realization of geometric interference in mesoscopic sys-
tems has become plausible.

In our discussion of non-Abelian holonomies in
Josephson junction circuits, we follow the spirit of the
schemes described in Refs. [5,6]. The starting point is the
network shown in Fig. 1(a). It consists of three super-
conducting islands labeled j � L;M;R (Left, Middle,
Right) each of which is connected to a fourth (Upper)
island labeled with U. Gate voltages are applied to the
three bottom islands via gate capacitances. The device
operates in the charging regime; that is, the Josephson
energies Jj (j � L;M;R) of the junctions are much
smaller than the charging energy EC of the setup. Each
coupling is designed as a Josephson interferometer (a
loop interrupted by two junctions and pierced by a mag-
netic field) as shown in Fig. 1(a). Thus, the effective
Josephson energies Jj can be tuned by changing the flux
in the corresponding loop. Electrostatic energies can be
varied by changing the gate voltages Vg.
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P H Y S I C A L R E V I E W L E T T E R S week ending
17 JANUARY 2003VOLUME 90, NUMBER 2
Let us first analyze the electrostatic problem (i.e., Jj �
0). For the sake of simplicity, we assume that all capaci-
tances are equal to C, and we consider identical gate
charges qg � CgVg=�2e� for the three bottom islands.
The charge states are indicated as j nU; nL; nM; nRi, where
n labels the number of Cooper pairs in the corresponding
island [17]. For gate charges qg ’ 1=2 and 1< 2qU �
3qg < 2 (where qU � CUVU=�2e� [see Fig. 1(a)], only
four charge states are important as long as T 	 EC �
�2e�2=�4C�. Three of these charge states, j0; 1; 0; 0i;
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j0; 0; 1; 0i; j0; 0; 0; 1i, are degenerate. Their charge con-
figuration corresponds to one excess Cooper pair in one
of the islands j � L;C; R, and none in the island U. The
fourth state j 1; 0; 0; 0i has one excess pair on the island U
and none on the other islands. All other charge states are
much higher in energy.

The Josephson couplings Jj allow for tunneling be-
tween the upper island and each of the bottom islands.
The quantum-mechanical Hamiltonian of this simple
four-state system reads (in complete analogy with
Refs. [5,6])
H � �ECj1; 0; 0; 0ih1; 0; 0; 0j �
1
2�JL�

�		L�j1; 0; 0; 0ih0; 1; 0; 0j � JM� �		M�j1; 0; 0; 0ih0; 0; 1; 0j

� JR� �		R�j1; 0; 0; 0ih0; 0; 0; 1j � H:c:�; (1)
where �EC � 4
5EC��qg 
 qU� 


1
2� is the energy differ-

ence between the three degenerate states and the fourth
one, and �		j � 	j=	0 are the external magnetic fluxes in
units of the flux quantum 	0 � hc=2e [16]. In all the
manipulations described below, the gate voltages will be
kept fixed. The three fluxes f �		L; �		M; �		Rg are the parame-
ters which will be varied cyclically. In general, all the
SQUID loops could be asymmetric, although it is not
necessary for the purpose of our discussion.

The Hamiltonian defined in Eq. (1) can easily be
diagonalized. The lowest and highest eigenstate are non-
degenerate. The peculiar feature, exploited in [5,6], is that
the other two states (with zero energy) are degenerate for
arbitrary values of the couplings Jj. The subspace is
spanned by the eigenstates (not normalized),

jD1i � 
 JMj0; 1; 0; 0i � JLj0; 0; 1; 0i;

jD2i � 
 JR�J
�
Lj0; 1; 0; 0i � J�Mj0; 0; 1; 0i�

� �jJLj
2 � jJMj

2�j0; 0; 0; 1i: (2)
By manipulation of the external magnetic fluxes, it is
possible to generate non-Abelian operations.

Charge pumping.—For this purpose, it is sufficient to
have only symmetric SQUID loops. In contrast to the
well-known turnstiles for single electrons or Cooper
pairs [18–20] (in which the gate potentials are modulated
periodically), here charge is transported through the
chain (from the L island to the R island) by means of
modulating the Josephson couplings while keeping the
gate voltages unchanged. The pumping cycle goes as
follows. The system is initially prepared in the
j0; 1; 0; 0i state (i.e., the state jD1i with JL � 0), where
the Cooper pair is in the left island. This can be achieved
by turning off all Josephson couplings and coupling the L
island to a lead which provides the extra Cooper pair.
Once the charge is on the island, one should change
adiabatically the magnetic fluxes along a closed loop �.
At the end of the loop, the initial state jD1i is mapped into
the rotated state: jD1i ! U�jD1i, with the unitary matrix
U�
U� � P exp
I
�
A � P exp

I
�

X
j�L;M;R

Ajd �		j ;

�Aj� ;! �

�
D 

������� @

@ �		j

�������D!
�
;  ; ! � 1; 2:

(3)

where P denotes the path ordering [3]. The operation U�
has a purely geometric origin since it is the holonomy
associated with the non-Abelian [u�2�-valued] connection
A (in general, the matrices Aj do not commute along the
path). If the path � is chosen in the � �		L; �		R� plane (at
fixed �		M � 0) [as shown in Fig. 1(b)], it can be shown
that, after one adiabatic cycle, the final state of the system
is j0; 0; 0; 1i; i.e., one Cooper pair has been transported
through the chain of the three islands [21].

The mechanism described here relies entirely on the
geometric phase accumulated during the cycle and can be
generalized to describe pumping of a single Cooper pair
through N superconducting islands. The connection be-
tween pumping and geometric phases has been discussed
by Pekola et al. [20]. The crucial difference is that here
only the Josephson couplings have to be varied. During
the cycle, exactly one Cooper pair is transported; in this
sense there are no errors due to the spread of the wave
function discussed in [20]. There are drawbacks though,
mostly related to the fact that the degenerate states are not
the ground state and relaxation processes may become
important.

Quantum computation, one-qubit.—The pumping pro-
cess illustrated thus far is nothing but one of the key
elements to construct a quantum computing scheme using
non-Abelian holonomies. To this aim, it may be useful to
reiterate that in this scheme the computational power
relies on the nontrivial curvature associated with the
connection A over the control manifold, M.

Proceeding along the lines of Ref. [6], we point out the
necessary ingredients and the differences which arise in
the case of the Josephson junction setup. The nanocircuit
presented in Fig. 1(a) constitutes the qubit. The logical
states to encode information in this implementation are

j0i‘ � j0; 1; 0; 0i; j1i‘ � j0; 0; 0; 1i:
028301-2
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The other two charge states (j1; 0; 0; 0i and j0; 0; 1; 0i)
serve as auxiliary states. To show that the implementation
is possible, it is sufficient to provide explicit representa-
tions for the gates U1 � ei�1j1i‘‘h1j and U2 � ei�2�y , de-
scribing rotations of the qubit state about the z axis
(phase shift) and the y axis (amplitude shift), respec-
tively. In this case, only one asymmetric SQUID (as
shown in Fig. 1) is required to implement the one-qubit
operations.

The gate U1 is a phase shift for the state j1i‘ while
the state j0i‘ remains decoupled; i.e., JL � 0 during the
operation. In the initial state, we have JR � 0, so the
eigenstates fjD1i; jD2ig correspond to the logical states
fj0i‘; j1i‘g. The control parameters �		M; �		R evolve adia-
batically along the closed loop C1 in the � �		M; �		R� plane
from �		R � 1=2 to �		R � 1=2 [see Fig. 2(a)]. By using the
formula for holonomies, Eq. (3), one can show that this
cyclic evolution produces the gate U1 with the phase �1:

�1 � �1

I
S�C1�

d �		Md �		R
sin�2� �		R�

�jJR� �		R�j
2 � jJM� �		M�j

2�2

where S�C1� denotes the surface enclosed by the loop C1

in M and �1 � 4�2JR�0�
2�jJMlj

2 
 jJMrj
2�.

Similarly, we can consider a closed loop C2 [see
Fig. 2(b)] in the � �		L; �		R� plane at fixed �		M � 0, and
let the control parameters �		L and �		R undergo a cyclic
adiabatic evolution with starting and ending point �		L �
�		R � 1=2. This operation yields the gate U2 with phase
�2,

�2 � �2

I
S�C2�

d �		Rd �		L

�
sin�� �		L� sin�� �		R�

�JM�0�2 � jJR� �		R�j
2 � jJL� �		L�j

2�3=2
; (4)

where S�C2� denotes the surface enclosed by the loop C2

in M, and �2 � 4�2jJR�0�j
2�jJMlj

2 � jJMrj
2�, where we

have assumed JL�0� � JR�0�. Obviously, the pumping
cycle discussed above is a special case of the gate U2

with �2 � �=2.
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FIG. 2. Geometric realizations of gates U1 � ei�1j1i‘‘h1j (a)
and U2 � ei�2�y (b). The structure (nonzero elements) of the
unitary matrices U1 and U2 is determined by the choice of the
plane containing the loop and by the starting/ending point of
the closed path. Different values of phase �1 (�2) can be
obtained by varying the area enclosed by loops C1 (C2).
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Quantum computation, two qubits.—It turns out that it
is possible to implement a conditional phase shift U3 �

ei�3j11i‘‘h11j by coupling two qubits via Josephson junc-
tions. These junctions should be realized as symmetric
SQUID loops such that the coupling can be switched off.
The capacitive coupling due to these SQUID loops can be
neglected if the capacitances of the junctions are suffi-
ciently small [22].

By setting �EC � 0 (this was not necessary in the one-
qubit case) and by coupling the qubits as shown in
Fig. 3(a), we obtain the Hamiltonian,

H2qubit �
1
2�J

�2�
M jUUihUMj � JXj11i‘hUUj � H:c:�; (5)

where we introduced the notation jUi � j1; 0; 0; 0i and
jMi � j0; 0; 1; 0i for the auxiliary states which are
coupled by the interaction between the qubits. The matrix
element JX � JX� �		UR; �		RU� is given by JX �


�1=2�JUR� �		UR� JRU� �		UR�*, where * � �1=�E�

C �

1=�E
�
C �. Here �E�


C and �E
�
C denote the charging

energy difference between the initial and the intermediate
state (see below). The coupling is of second order in the
Josephson energies since the interqubit coupling junctions
change the total number of pairs on each one-bit setup.
Thus, the coupling occurs via intermediate charge states
which lie outside the Hilbert space of the two-qubit
system. These are states, e.g., j0; 0; 0; 0i � j1; 0; 0; 1i, with-
out excess Cooper pairs on the first qubit and two excess
pairs on the second qubit. We have abbreviated the charg-
ing energy difference between the corresponding state
and the initial qubit state by �E
�

C , and we have denoted
the external magnetic fluxes in the coupling SQUID loops
by 	UR and 	RU.

While JX� �		UR; �		RU� is the only off-diagonal coupling
of second order, there are also second-order corrections of
the diagonal elements, i.e., of the energies of the two-
qubit states. These corrections would lift the degeneracy
and thus would hamper the geometric operation which is
based on the degeneracy of all states. It is therefore crucial
that it is possible to compensate these corrections and to
guarantee the degeneracy. This can be done by properly
adjusting the gate voltages (for example, an energy offset
between jUUi and jUMi can be compensated by tuning
the gate charge qg for the middle island of the second
qubit). Note that during the geometric operation the val-
ues of the Josephson couplings are changing and therefore
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FIG. 3. Interqubit coupling for the implementation of the gate
U3 and its geometric realization.
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also the energy shifts are not constant. Consequently,
their compensation by means of the gate voltages has to
follow the evolution of the parameters.

Let us now show explicitly how the gate U3 can be
achieved. To this aim, we consider a closed loop C3 in the
� �		�2�

M ; �		UR� plane at fixed �		RU � 0 [see Fig. 3(b)]. If the
control parameters �		UR and �		�2�

M undergo a cyclic adia-
batic evolution with starting and ending point �		UR �
1=2, �		�2�

M � 0, the geometric phase obtained with this
loop is

�3 � �3

I
S�C3�

d �		�2�
M d �		UR

�
*2 sin�2� �		UR�

�jJ�2�M � �		�2�
M �j2 �*2 JRU�0�

2jJUR� �		UR�j�
2

with �3 � 4�2JRU�0�4�jJ2Mlj 
 jJMrj2� and JUR�0� �
JRU�0�.

As we have mentioned in the introduction, some cau-
tion is required before regarding this scheme ready for
implementation. In practice it will be difficult to achieve
perfect degeneracy of all states. Thus, the question is
imposed to which extent incomplete degeneracy of the
qubit states is permissible. Clearly, the adiabatic condition
requires the inverse operation time +op to be smaller than
the minimum energy difference to the neighboring states:
+
1
op 	 min�EC; Jj; JX. On the other hand, if the degen-

eracy is not complete and the deviation is of the order ,,
one can show by modifying the derivation of Eq. (4) in
Ref. [13] that for ,	 +
1

op the holonomies can be realized
to a sufficient accuracy. This inequality expresses the
requirement that the operation time be still small enough
in order to not resolve small level spacings of the order ,.

There is another important constraint on +op. As the
degenerate states in Eq. (2) are different from the ground
state of the system, +op must not be too large in order to
prevent inelastic relaxation. The main origin for such
relaxation processes is the coupling to a low-impedance
electromagnetic environment.We can estimate the relaxa-
tion rate by �in � E�Renv=RK�, where RK � h=e2 is the
quantum resistance and E is on the order of the Josephson
energies E� Jj; JX. Thus, it is not difficult to satisfy the
condition +op < �
1

in experimentally. In fact, it has been
found recently that inelastic relaxation times in charge
qubits can be made quite large and exceed by far the
typical dephasing times due to background charge fluctu-
ations [23,24].

Both charge pumping and the implementation of quan-
tum computing are related to coherent manipulations of
charge states. Therefore, as a readout, one can use the
scheme developed in Ref. [10] to measure charge qubits.
No additional difficulty is forecasted at this level.
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