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We study the entanglement cost under quantum operations preserving the positivity of the partial
transpose (PPT operations). We demonstrate that this cost is directly related to the logarithmic
negativity, thereby providing the operational interpretation for this entanglement measure. As examples
we discuss general Werner states and arbitrary bipartite Gaussian states. Then we prove that for the
antisymmetric Werner state PPT cost and PPT entanglement of distillation coincide. This is the first
example of a truly mixed state for which entanglement manipulation is asymptotically reversible, which
points towards a unique entanglement measure under PPT operations.
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LQCC. The asymptotic reversibility of pure state entan- PPT operations is given by the logarithmic negativity
The theory of quantum entanglement is closely inter-
twined with the study of those quantum operations that
can be locally implemented in quantum systems consist-
ing of more than one subsystem. If one also allows for the
classical transmission of outcomes of local measure-
ments, then one arrives at the set of local quantum
operations with classical communication (LQCC). This
set of quantum operations reflects on the one hand the
typical physical restrictions imposed by the setup of
many basic applications of quantum information theory
[1]. On the other hand, the very notion of entanglement is
defined by this set of operations. For example, one calls a
quantum state entangled if it cannot be prepared using
LQCC, in contrast to so-called separable states.

The study of entanglement manipulation is concerned
with the transformation from one entangled state to
another by means of LQCC. Not surprisingly, one finds
that for any finite number of identically prepared quan-
tum systems such manipulation of entanglement under
LQCC is generally irreversible, both for pure and mixed
states. In fact, the pure-state case can be most easily
assessed, as powerful necessary and sufficient criteria
for the interconvertibility of entangled states have been
found [2]. In the asymptotic limit of infinitely many
identical copies of a pure state, in contrast, pure bipartite
entanglement can be interconverted reversibly [3]. This
statement can also be cast in the language of entangle-
ment measures. These are functions of a quantum state
that cannot increase under a given set of operations (e.g.,
LQCC). Entanglement measures are useful mathematical
and conceptual tools and several such measures have been
suggested, most notably the entanglement of formation
[4], of distillation [4,5], and the relative entropy of
entanglement [5–8]. The distillable entanglement is, es-
sentially, defined as the asymptotic number of pure maxi-
mally entangled states that can be extracted via LQCC
from a set of identically prepared quantum systems.
Analogously, the entanglement cost is defined as the
asymptotic number of maximally entangled states that
are required to create a given, possibly mixed state, by
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glement is then equivalent to the statement that the en-
tanglement cost and the entanglement of distillation are
in fact equal for pure states. Then a single number, the
von Neumann entropy of a subsystem, uniquely quantifies
the degree of entanglement [3]. For mixed states, how-
ever, this asymptotic reversibility under LQCC operations
is lost again. Examples have been found for which the
entanglement cost and the entanglement of distillation are
provably different [9,10].

The study of general asymptotic entanglement manipu-
lation—while formally being at the root of a theory of
entanglement —is complicated by the fact that the char-
acterization of LQCC themselves is not well understood.
However, there is a closely related set of operations that
can be much more easily characterized, namely, that of
positive-partial-transpose-preserving operations (PPT
operations in brief). These operations are defined as those
that map any state which has positive partial transpose
into another state with positive partial transpose. PPT
operations are more powerful than LQCC operations as
they allow, for example, the creation of any bound en-
tangled state from a product state and ensure the distil-
lability of any NPT state, i.e., any state that cannot be
created by PPT operations [11]. As a consequence, the set
of states decomposes into two subsets, the PPT states
(nondistillable) and the states that are distillable under
PPT operations. This provides a significant simplification
of the entanglement structure under PPT operations as
compared to that under LQCC operations where at least
three classes of states, disentangled, bound entangled,
and distillable are known. Indeed, the results presented
in the following point towards the possibility that
the structure of entanglement under PPT operations is
even simpler, namely, that PPT-entanglement cost and
PPT-distillable entanglement may be equal, i.e., that
entanglement may be asymptotically reversible under
PPT operations.

We start by summarizing the main results of this paper.
First, we prove that the PPT-entanglement cost for the
exact preparation of a large class of quantum states under
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[12–14], thus providing an operational meaning to the
logarithmic negativity. Second, we employ this result to
show that the PPT-entanglement cost of the antisymmet-
ric Werner state in any dimension is given by the loga-
rithmic negativity thereby demonstrating that the PPT
cost is equal to the PPT entanglement of distillation for
this state. This is the first example of a truly mixed state
for which the entanglement manipulations have been
proven to be asymptotically reversible. We end this work
with a discussion of the implications of this result,
including the possibility of the reversibility of PPT-
entanglement manipulations for all states.

Before we state and formally prove our results we
introduce a few basic concepts, including the definitions
of the PPT entanglement of distillation and the PPT-
entanglement cost. We introduce the notation (following
Rains [15]) where � denotes a trace-preserving com-
pletely positive PPT-preserving map and ��K� is the
density operator corresponding to the maximally en-
tangled state vector in K dimensions, i.e., ��K� �
j �ih �j with j �i �

P
K
i�1 jiii=

����
K

p
. The PPT-distillable

entanglement is defined as

DPPT��� � supfr: lim
n!1

sup
�

tr����
n���2rn�� � 1g:

For the PPT-entanglement cost of a quantum state � we
study two definitions that correspond to different require-
ments in the preparation of the state �. The standard
definition of the PPT-entanglement cost CPPT requires
that the quality of the approximation of the state �
n by
����K�� becomes progressively better and converges in
the asymptotic limit under the trace norm, or, formally

CPPT��� � inffr: lim
n!1

inf
�

trj�
n �����2rn��j � 0g:

However, for a more restrictive definition one requires
the exact preparation of any finite number of copies of the
state and not just the asymptotically exact preparation.
This quantity, EPPT, which will generally be larger than
CPPT, reads formally as

EPPT��� � lim
n!1

inffrn: inf
�

trj�
n �����2rnn��j � 0g:

This quantity will later be related to the logarithmic
negativity, which was defined in [12] as

LN��� � log2trj�
�j;

where �� stands for the partial transpose of the density
operator �. While the negativity trj��j is an entanglement
monotone (including convexity) [12,14], the logarithmic
negativity is a monotone only under nonselective PPT-
preserving operations. Apart from the partial transposi-
tion of a density operator, another important quantity for
the following will be the so-called binegativity j��j� [8].
While its physical interpretation is not yet properly
understood, it plays a significant role in the following
theorems and has proven to be a useful concept in
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investigations of entanglement manipulations [8]. After
these basic definitions we are now in a position to present
and prove the first theorem concerning the PPT-entangle-
ment cost.

Theorem: The PPT-entanglement cost EPPT��� for the
exact preparation of the state � satisfies

log2trj�
�j � EPPT��� � log2Z���;

where Z��� � trj��j � dim���max�0;��min�j��j��, and
�min�A� is the smallest eigenvalue of the operator A.

Proof: The lower bound follows directly from the
monotonicity of the logarithmic negativity under non-
selective trace-preserving completely positive maps. We
wish to find a PPT map � that maps the maximally
entangled state ��Kn� of Kn dimensions to the target
state �
n for any value of n, i.e., ����Kn�� � �
n for
all n. Then we have, for any n,

log2trj��
��
nj � log2trj�����Kn����j � log2trj��Kn��j

� log2Kn

so that log2trj�
�j � limn!1

1
n log2Kn � EPPT���.

Now we proceed to prove the upper bound on the
entanglement cost. The linear map � realizing the trans-
formation ��Kn� � �
n must be completely positive and
trace preserving (CPTP) and PPT (which means that � �
� � � is positive as well). By proposing a map that
satisfies these criteria, we directly find an upper bound
to the PPT-entanglement cost. Consider, thereto, maps of
the form

��A� � Tr�A��Kn��F� Tr�A�1 ���Kn���G;

where

F � ����Kn��; G �
��1 ���Kn��

K2
n � 1

:

The requirements on � are that it must be CPTP and PPT
and must convert ��Kn� into the state �
n. Thus F � �
n

and G must be a state. From the PPT-ness requirement,
� �� � � � 0, it follows that

8A � 0:Tr�A��Kn�
��F� � Tr�A�1 ���Kn�

���G� � 0;

where we have made use of the self-duality of the partial
transpose, Tr�X�Y� � Tr�XY��. The partial transpose of
��Kn� is given by Kn��Kn�� �

PKn
ij jijihjij. This is the

flip operator for which every symmetric (antisymmetric)
state is eigenvector to eigenvalue 1 ��1�. As a conse-
quence one can express ��Kn�� in terms of the projectors
on the symmetric and antisymmetric subspaces S and A,
respectively,

��Kn�� � �S �A�=Kn;

and the PPT-ness condition becomes
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8A � 0: Tr�AA��� F� � �Kn � 1�G���

Tr�AS��F� � �Kn � 1�G�� � 0:

Since A and S are mutually orthogonal projectors and
sum to the identity, this condition simplifies to the opera-
tor inequality

��Kn � 1�G� � F� � �Kn � 1�G�:

As a direct consequence, it follows that G must be a PPT
state, G� � 0, which was, of course, to be expected.

For PPT-states, the PPT-entanglement cost is obviously
zero, so that the optimal Kn � 1. Therefore, we restrict
ourselves in the following to states F � �
n that are
not PPT; hence, EPPT > 0 and Kn > 1. Obviously,
�1=n� logKn is a nonincreasing function of n, tending to
EPPT > 0 in the limit. Hence, for every n, Kn �
exp�nEPPT� > 1. This implies that, for every non-PPT
state �, there is a number N such that 8n > N:Kn � 1.
For sufficiently large n, therefore, the PPT-ness condition
on the map � can be approximated to arbitrary precision
by the condition �KnG

� � F� � KnG
�.

We now propose to use the following state G, which
incorporates a correction term to ensure positivity of G:

G �
�j��j� � �1�
n

Zn
; � � max�0;��min�j�

�j���;

Z � trj��j � � dim���:

It is now easily seen that the PPT-ness condition for the
map � will be satisfied for the choice Kn � Zn (if � is
larger than zero, a somewhat smaller value of K is pos-
sible, but we will not consider this possibility). Hence, we
get the upper bound for the PPT-entanglement cost,
EPPT��� � log2Z��� �

In general, the lower and the upper bound in the theo-
rem will not coincide unless the binegativity is positive,
i.e., if j��j� � 0. However, the vast majority of quantum
states have this property, as numerical investigations in-
dicate. Important examples for which j��j� � 0 include
the set of Werner states in d� d-dimensional systems,
and all Gaussian bipartite states in infinite-dimensional
systems with canonical degrees of freedom. This will be
proven in the subsequent two Lemmas.

Lemma 1: Let � be a Gaussian state defined on a
bipartite system with a finite number of canonical degrees
of freedom. Then the binegativity satisfies j��j� � 0.

Proof: Let � be the covariance matrix of � [16] and
P :� diag�1; . . . ; 1; 1;�1; . . . ; 1;�1� be the matrix corre-
sponding to mirror reflection in one part of the bipartite
system, i.e., partial transposition on the level of states
[16]. Then, the normal mode decomposition [12] (the
Williamson normal form) of the covariance matrix of
�� can be written as SP�PST �: diag�x1; x1; . . . ; xn; xn�,
with xi � 0 for all i � 1; . . . ; n, where S 2 Sp�2n;R� is
an appropriate symplectic matrix. Therefore, the problem
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of taking the absolute value has been reduced to an
effective single-mode problem. Going to the Fock state
basis it is then straightforward to see that the covariance
matrix of j��j=k��k1 is given by S�1�SP�PST �
p��ST��1, where p :� diag�p1; p1; . . . ; pn; pn� is a positive
diagonal matrix with entries

pi �
�
0; if xi � 1;
1=xi � xi; if xi < 1:

The state � has a positive binegativity, i.e., �bi :�
�j��j=k��k1�

� � 0, iff the covariance matrix �bi associ-
ated with �bi satisfies the Heisenberg uncertainty prin-
ciple �bi � i� � 0, where � is the symplectic matrix [16].
Hence, �bi is positive iff PS�1�SP�PST � p��ST��1P�
i� � 0. But as for the covariance matrix � of the
original state � we have �� i� � 0, and because
PS�1p�ST��1P � 0 this is indeed the case. �

Lemma 2: For any Werner state � in a d� d-
dimensional system the binegativity satisfies j��j� � 0 [8].

Proof: Any Werner state for a bipartite state of two
d-dimensional subsystems can be written as

� �
p�1 � F�
d�d� 1�

�
�1� p��1 � F�

d�d� 1�
� q1 � rj��d�ih��d�j�;

with

q �
p

d�d� 1�
�

1� p
d�d� 1�

; r �
1� p
d� 1

�
p

d� 1
;

and F being the flip operator. Then we find

�� � q�1 � j��d�ih��d�j� � �q� r�j��d�ih��d�j

and

j��j� � q
�
1 �

F
d

�
�

jq� rj
d

F:

The eigenvalues of F are �1 and therefore the eigenvalues
of j��j� are easily checked to be non-negative. �

As a consequence, for Werner states, Gaussian states,
and for any other states for which j��j� � 0, such as pure
states [8], we have proven that the entanglement cost for
the exact preparation of the quantum state � using PPT
operations is given by the logarithmic negativity. This
provides the previously unknown operational interpreta-
tion of the logarithmic negativity for these states. Note
that the cost EPPT may generally coincide with the loga-
rithmic negativity even for states whose binegativity is
negative, but we were unable to prove or disprove this
possibility. Furthermore, note also the surprising fact that
the PPT cost for exact preparation is a concave function on
Werner states (see also Fig. 1). This implies, rather coun-
terintuitively, that mixing, i.e., the loss of information,
may increase the PPT cost for exact preparation. We
proceed by using the Theorem together with Lemma 2
to provide a result on the PPT-entanglement cost for the
antisymmetric Werner state.
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FIG. 1. Various entanglement costs plotted for Werner states
of the form � � p!a � �1� p�!s for qutrits. The dashed line
represents the PPT cost for the exact preparation of �, which is
a concave function. The dotted line is the mixing protocol (one
can create asymptotically the Werner state � � �2p� 1�!a �
�1� p��!a � !s� by creating the state !a with probability
2p� 1 and the state !a � !s with probability �1� p�=2 at a
cost given by the straight line), and represents the best known
PPT cost for approximate but asymptotically exact preparation
of �. The solid line is the asymptotic relative entropy of
entanglement for PPT operations.
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Lemma 3: The PPT-entanglement cost CPPT for the
antisymmetric Werner state � � !a is given by LN���
and coincides with its PPT-distillable entanglement
DPPT���.

Proof: From Lemma 2 we know that the binegativity of
!a is positive. As a consequence from the Theorem we
conclude that EPPT��� � LN���. This provides an upper
bound on the entanglement cost for asymptotically exact
preparation of the states, i.e., LN��� � EPPT��� �
CPPT���. On the other hand, a lower bound is given by
the PPT-distillable entanglement of !a, which has
been computed in [15] and which equals the logarithmic
negativity as well. Therefore we have LN��� �
EPPT��� � CPPT��� � DPPT��� � LN��� and all the
quantities coincide. �

This Lemma is remarkable, as it shows that asymptotic
entanglement transformations can be reversible even for
truly mixed states, as long as one considers the class of
PPT operations. The result of Lemma 3 may still be a
coincidence as it refers to an extreme point of a set of
states (here the set of U 
U symmetric states, i.e., the
Werner states) but further evidence from numerical
studies suggests that PPT-entanglement cost and PPT-
distillable entanglement converge towards each other on
Werner states. This collection of evidence makes it plau-
sible to ask the question as to whether the entanglement
cost under PPT operations coincides with the PPT entan-
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glement of distillation or, in other words, whether asymp-
totic entanglement transformations are reversible under
PPT operations. If the answer to this question would be
affirmative, the theory of entanglement would simplify
considerably. As a consequence the theory of mixed state
entanglement would take its simplest form in the frame-
work of PPT operations. This and the other results in this
work reveal that PPToperations are a most useful concept
for the study of quantum entanglement, meriting further
investigations into their properties.
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