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We make a step towards quantum nanoplasmonics: surface plasmon fields of a nanosystem are
quantized and their stimulated emission is considered. We introduce a quantum generator for surface
plasmon quanta and consider the phenomenon of surface plasmon amplification by stimulated emission
of radiation (spaser). Spaser generates temporally coherent high-intensity fields of selected surface
plasmon modes that can be strongly localized on the nanoscale, including dark modes that do not
couple to far-zone electromagnetic fields. Applications and related phenomena are discussed.
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undergo stimulated emission but in contrast to photons
can be localized on the nanoscale. Spaser as a system will

transforms, e.g., E�r; !� �
�T=2 E�r; t�e dt. This time

should satisfy �n  T  1=!n, which is possible in the
The explosive growth of nanoscience and nanotechnol-
ogy during the past decade has also led to great interest
and improved understanding of nanoscale optical fields,
and to the development of tools for studying and exploit-
ing them. In particular, such fields are excited at metallic
nanoparticles or nanofeatures of metallic microparticles,
where they are greatly enhanced due to high quality-
factor surface plasmon (SP) resonances [1–3]. These local
fields are singular, exhibiting giant spatial fluctuations
and energy concentration in nanosize volumes [3–5].
Because of these ‘‘hot spots,’’ the optical responses are
gigantically enhanced and can be strong enough to allow,
in particular, observation of Raman scattering from a
single molecule attached to a metal colloidal particle
[6,7]. A promising area is local optical nanosize probing
by a metal tip that creates enhanced fields in its vicinity.
This was demonstrated for near-field fluorescence micros-
copy based on two-photon excitation [8]. A theory of
manipulation of particles by enhanced optical fields at a
metal tip (optical nanotweezers) was developed [9]. It
was suggested, quite early, to use local fields for
linear- and nonlinear-optical nanoprobing and nanomo-
dification [10].

The above phenomena and applications are based on
the excitation of local fields in a nanostructure by a
resonant external optical field. Significant limitations
are imposed by this mode of excitation. In particular,
only a very small fraction of the excitation field energy
can be concentrated in the local field. It is almost impos-
sible to select a single mode or a few modes to excite.
Also, there exist a large number of dark eigenmodes that
have desirable localization properties but cannot be ex-
cited by an external wave [11]. In this Letter we propose a
way to excite local fields using surface plasmon amplifi-
cation by stimulated emission of radiation (spaser). The
spaser radiation consists of SPs that are bosons and
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incorporate an active medium formed by two-level emit-
ters, excited in the same way as a laser active medium:
optically, or electrically, or chemically, etc. One promis-
ing type of such emitters is quantum dots (QDs). These
emitters transfer their excitation energy by radiationless
transitions to a resonant nanosystem that plays the same
role as a laser cavity. These transitions are stimulated by
the SPs already in the nanosystem, causing buildup of a
macroscopic number of SPs in a single mode.

We consider a nanosystem formed by either metal or
semiconductor inclusions with dielectric function "�!�,
embedded in a dielectric host with dielectric constant "h.
The classical field equation for the SP eigenmodes ’n�r�
and eigenvalues sn is [11] r � ���r� � sn�r’n�r� � 0,
where ��r� is the characteristic function, equal to 1 inside
the inclusions and to 0 in the host.

The actual SP frequencies �n satisfy s��n� � sn,
where s�!� 	 �1� "�!�="h��1 is the spectral parameter
[12]. These frequencies are complex, �n � !n � i
n,
with real frequency !n and relaxation rate 
n of the
nth SP. For weak relaxation, 
n 
 !n, one finds that
!n satisfies an equation Re�s�!n�� � sn and that


n �
Im�s�!n��

s0n
; s0n 	

dRe�s�!��

d!

�������!�!n

: (1)

Quantization of the SP system, valid in the quasistatic
regime for times shorter than the SP lifetime �n 	 1=
n,
is carried out by using the following approximate expres-
sion for the energy H of an electric field E�r; t�, which is
obtained for a dispersive system by following Ref. [13],

H �
1

4�T

Z 1

�1

d�!"�r; !��

d!
E�r; !�E�r;�!�

d!
2�

d3r:

(2)

Here T is an integration time used to calculate FourierRT=2 i!t
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FIG. 1. (a) SP lifetime �n � 1=
n as a function of SP eigen-
energy h!n; computed from Eq. (1). (b) V-shaped nanosized
metallic inclusion in the xz plane. Distances are expressed as
grid steps, with one step corresponding to a distance of 1 to
5 nm. The lower limit allows us to use a macroscopic permit-
tivity, while the upper limit satisfies the requirement that the
entire system size should be on the nanoscale.
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weak relaxation case, where the final results are indepen-
dent of T. We expand the field operator E�r; t� 	
�r��r; t� in a series of the eigenstates ’n�r�:

��r; t� �
X
n

��������������
2� hsn
"hs0n

s
’n�r�e�
nt�ane

�i!nt � aynei!nt�;

(3)

where ayn and an are, respectively, the creation and anni-
hilation operators of a SP in the state ’n�r�. From
Eq. (2), using Eq. (3), the quantized Hamiltonian
takes on the standard harmonic oscillator form: H �P

n h!n�a
y
nan � 1=2�.

Now assume an active host medium that we approxi-
mate as a collection of two-level dipolar emitters with
population densities �0�r� and �1�r� in the ground and
excited states, positioned at the points ra, a � 1; 2; . . . and
having dipole moments d�a� with the transition matrix
element d10. The interaction of this active medium with
the SP field is described by the perturbation H0 �P

a d
�a� � r��ra� to the system Hamiltonian.

Applying Fermi’s golden rule to H0, and taking into
account Eqs. (1) and (3) , we obtain a kinetic equation
governing the number Nn of SPs in the nth mode:

_NNn � �An � 
n�Nn � Bn: (4)

Assuming an isotropic distribution of the transition di-
poles, we calculate the Einstein coefficient An, which
describes the net stimulated emission of SPs:

An �
4�
3 h

s0nsnjd10j2pnqn
"h�Ims�!n��

2 
n; (5)

where pn is the spatial overlap factor of the population
inversion and eigenmode intensity, pn �

R
�r’n�r��2 �

��1�r� � �0�r��d3r. The spectral overlap factor is qn �R
F�!��1� �!�!n�

2=
2
n�

�1d!, where F�!� is the
normalized-to-1 spectrum of dipole transitions in the
active medium, close to its fluorescence peak. The Ein-
stein spontaneous emission coefficient Bn is similar to An,
but the excited state population �1 replaces the population
inversion �1 � �0 in the expression for pn.

To discuss the behavior of this system, we introduce the
dimensionless gain of the nth eigenmode, �n � �An �

n�=
n. Quantum amplification and generation of SPs
exist if �n > 0. For �n * 1, the spontaneous emission
is unimportant. In this case, coherent generation occurs,
and the number of SP’s in a single eigenmode grows
exponentially fast, Nn / exp�
n�nt�, eventually limited
by the inversion depletion.

Consider some limiting cases. For the maximum popu-
lation inversion, �1  �0, and a thick active medium, a
universal upper limit is approached, pn � �, where � �
�1 � �0 is the total density of the two-level energy do-
nors. In this case, the gain does not depend on the field
distribution of individual modes, but only on their fre-
quencies. The factor qn depends on the width � of the
027402-2
spectral function F�!� as compared to the SP linewidth

n: For �  
n, qn � 
n=�, while in the opposite case
� 
 
n, assuming that the donor transition is centered at
the SP frequency, we have qn � 1.

The SP lifetime �n (mostly due to dephasing) should be
long enough to enable the spaser to generate or amplify
local fields; it also defines the temporal scale of the
evolution of these fields [cf. Eqs. (4) and (5)]. Our nu-
merical results reported below are for inclusions made of
metallic Ag: Ag has the smallest value of Im�"� for any
natural metal in the visible and near infrared (nir) optical
regions [14]; such systems therefore exhibit the largest
values of �n. Figure 1(a) shows calculated SP lifetimes �n
that are comparatively long (50–120 fs) for 1:7 > h!n >
0:8 eV. This also implies that the spaser will be relatively
fast, capable of generating pulses as short as & 100 fs.

The specific geometry of a metal/dielectric nanosys-
tem that we consider was introduced in our previous
Letter on ultrafast responses [15]. This is a flat V-shaped
metallic nanoinclusion positioned in the central xz plane
of the dielectric host, as illustrated in Fig. 1(b). This V
shape is two grid steps (2 to 10 nm) thick in the y
direction. We assume that the active host medium has a
planar distribution of emitters parallel to this V-shaped
inclusion and consider two cases: In a thin medium, the
two-level emitters occupy the central grid plane (except
for the volume occupied by the V shape itself), as well as
the two neighboring grid planes above and below that
plane, resulting in a total thickness of three grid steps
(from 3 to 15 nm). In the opposite case of a thick medium,
the emitters occupy all the host volume. In all cases we
assume �1 � � and qn � 1, as already discussed.

Emission in the nir, where spasing is expected, im-
poses stringent requirements on the two-level emitters.
Infrared dyes are inefficient and not very stable at room
temperature. Two other possibilities are rare-earth ions
and semiconductor QDs. The latter seem the most prom-
ising, since they are tunable in frequency due to quantum
confinement, have relatively large transition dipoles d10
and narrow transition lines, and allow dense packing
without compromising their optical properties [16]. The
well-studied CdSe QDs emit at visible frequencies, too
027402-2
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high for the spaser medium. The novel PbS and PbSe QDs
can be synthesized with radii RD � 1–8 nm to have tran-
sition energies 0:7–1:8 eV (see, e.g., Refs. [17,18]), which
are ideally suited for spasing.

The dipole element for the 1Se ! 1Sh transition in
QDs can be estimated from Kane’s theory, conventionally
assuming strong overlap of the envelope states, as d10 �
e

���������������������������
fK=�2m0!2

n�
p

, where f is the transition oscillator
strength, K � 3 eV is Kane’s interband parameter, and
m0 is the bare electron mass. Setting f � 1, which some-
what underestimates d10 as well as the consequent gain,
we obtain d10 � 1:9� 10�17 esu.

We estimate "h from the Maxwell Garnett formula
assuming a dense packing of QDs in vacuum and adopting
the known value of � 23 for the dielectric constant of
PbS and PbSe, obtaining "h � 6:6. The QD spectral
width � is mostly due to the inhomogeneous broadening.
In chemically synthesized QDs [16], � is small enough,
�� 
n, yielding qn & 1, which is sufficient for spasing.

Because both d10 and "h are essentially independent of
the QD size, Einstein’s stimulated emission coefficient An
in Eq. (5) and, consequently, the spaser gain �n are higher
for smaller QDs, An / � / R�3

D . For our computations, we
chose a moderately small RD � 2:3 nm, to be on the
conservative side in estimating the gain.

The spaser gain �n is displayed in Fig. 2 vs h!n for
both a thick and a thin medium. High values of �n, up to
12, are predicted for the latter [panel (b)]. The maximum
value of �n is even greater for the thick medium, and the
amplification spectral band is wider [panel (a)]. The
similarity in response of these two samples is due to
the strong localization near the metal surface of the
efficient spasing modes: only those QDs contribute that
are positioned in the areas filled by these modes. The
large gain for a thin (a few monolayers) QD active me-
dium which surrounds the metal inclusion is advanta-
geous: a spaser is possible whose total size is on the
nanoscale.

In a thin active medium [Fig. 2(b)], the function
�n� h!n� exhibits some irregularities (‘‘noise’’). These
come from fluctuations of the overlap factor pn from
mode to mode, illustrated in Fig. 3(a), which reflect the
chaotic nature of these modes. Fortunately, the gain is
maximal for h!n between 1.1 and 1.9 eV, where these
fluctuations are small. When Au replaces Ag, computa-
tions indicate (data not shown) a positive gain �n only if
FIG. 2. Gain �n of spaser as a function of the eigenmode
energy h!n. (a) Thick active medium, pn � �. (b) Thin active
medium; see text.
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RD < 2 nm, and �n values that are significantly smaller.
This is due to the higher losses in Au.

As we showed previously, there exist dark eigenmodes
which cannot be excited or observed from the far field
(wave) zone [11]. Among them are all the Anderson-
localized eigenmodes. An important question is whether
these dark eigenmodes can be excited (generated) in
spaser. This is not only a principal fundamental question
but is also of significant importance for applications:
Strongly localized dark eigenmodes excited in a spaser
are promising for nanometer probing and high-field
nanoscale photomodification.

The ability of the spaser to excite both luminous and
dark eigenmodes, including the strongly localized ones,
is clearly demonstrated by the data of Fig. 3(b) where we
plot the gain factor �n vs the oscillator strength fn for
every eigenmode. The eigenmodes with fn < 10�7 can be
considered as dark, and those with fn * 10�7 as lumi-
nous. From Fig. 3(b), we conclude that the highest-gain
eigenmodes (�n * 10) are quite rare and almost equally
divided between dark and luminous.

When the spaser amplification condition �n > 0 is
satisfied, a generating nth eigenmode accumulates a mac-
roscopic number Nn of coherent SPs, which induces a
local field of root-mean-square (RMS) magnitude

E�r� � h�r��r��2i1=2 � En�r��Nn � 1=2�1=2;

En�r� � f4� hsn�r’n�r��2="hs0ng1=2:
(6)

In Fig. 4, we show the RMS amplitude En�r� in the
metal nanostructure plane for eigenmodes with the high-
est spaser gains at the two spectral maxima h!n �
1:16 eV [panels (a) and (b)], and h!n � 1:6 eV
[panels (c) and (d)]. The highest gain occurs for a lumi-
nous eigenmode [panel (a)] with h!n � 1:15 eV [cf.
Figs. 1 and 2]. This eigenmode is concentrated within a
radius a � 15 nm around the tip of the V shape. The
spasing of this mode will be seen in the far zone as almost
isotropic radiation with an anomalously narrow spectrum
(high temporal coherence) and high spectral intensity. A
dense enough ensemble of spasers may actually form a
laser developing also spatial coherence, which we will
discuss elsewhere.
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FIG. 3. (a) Overlap factor pn as a function of the mode energy
h!n. (b) Amplification gain �n vs eigenmode oscillator
strength fn.
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FIG. 4. Local field amplitude in the V-shaped inclusion plane
for eigenmodes with highest gains in the regions of two
spectral maxima for the case of thin active medium. The
inclusion material is Ag. The grid step is assumed to be 2 nm.
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Another high gain spaser eigenmode at h!n �
1:18 eV, displayed in Fig. 4(b), is a completely dark
eigenmode that creates very high local fields of ’ 7�
107�Nn �

1
2�
1=2 V=m, which are only a few orders of mag-

nitude below atomic-strength fields. These fields are
sharply localized at the tip of the nanostructure providing
a unique tool for possible applications in nanoscale opti-
cal probing and modification where the undesirable, back-
ground far-zone radiation from the tip itself is absent.

In the second spectral maximum, the spaser eigen-
modes at h!n � 1:63 eV [Fig. 4(c)] and 1.56 eV
[Fig. 4(d)] are similar in some but not all respects to
those in panels (a) and (b) discussed above: A dark
eigenmode at 1.63 eV is now delocalized, while a lumi-
nous eigenmode at 1.56 eV is strongly localized at the tip.
However, the gains of these eigenmodes are about half of
those at � 1:16 eV. Note that the selection of this vs the
previous group of eigenmodes can be done by tuning the
transition frequency of QDs by selecting their sizes. At
a given frequency, an eigenmode can be selected by
positioning QDs in the region where its local fields are
maximal.

The present quantum-plasmonics theory may have ap-
plications other than spaser. One such application is based
on the fact that the Hamiltonian is a functional of
the system geometry on the nanoscale, namely, H �P

n h!n���r���Nn �
1
2�. This brings about mechanical

stresses in the system which depend on the level of ex-
citation, but exist even for Nn � 0 (Casimir effect).
027402-4
To summarize, we proposed the spaser effect and pro-
spective quantum-nanoplasmonic device. Spaser is not a
laser: Its two-level emitters (QDs, in particular) do not
emit light waves but rather undergo radiationless transi-
tions where their excitation energy is transformed into
quasistatic electric field energy of SPs. The stimulated
nature of this energy transfer causes buildup of macro-
scopic numbers of coherent SPs in individual eigenmodes
of a nanosystem. It is possible to generate dark SPs that
do not couple to far-zone fields. Spaser generates in-
tense, nanoscale-localized optical-frequency fields with
many possibilities for prospective applications in nano-
science and nanotechnology, in particular, for near-field
nonlinear-optical probing and nanomodification.
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