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Evidence for Unconventional Strong-Coupling Superconductivity in PrOs4Sb12:
An Sb Nuclear Quadrupole Resonance Study
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We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional
superconducting (SC) property in PrOs4Sb12 with Tc � 1:85 K. The temperature (T) dependence of
nuclear-spin-lattice-relaxation rate, 1=T1, and NQR frequency unravel a low-lying crystal-electric-field
splitting below T0 � 10 K, associated with Pr3��4f2�-derived ground state. In the SC state, 1=T1 shows
neither a coherence peak just below Tc K nor a T3-like power-law behavior observed for anisotropic HF
superconductors with the line-node gap. The isotropic energy gap with its size �=kB � 4:8 K seems to
open up across Tc below T� � 2:3 K. It is surprising that PrOs4Sb12 looks like an isotropic HF
superconductor—it may indeed argue for Cooper pairing via quadrupolar fluctuations.
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behavior and superconductivity at Tc � 1:85 K in the
filled-skutterudite compound PrOs4Sb12 that is the first

1�
 � ��Ix � Iy�g, where eq gives the component along
the principle z axis of the EFG, which is determined by
A class of Ce- and U-based intermetallic compounds
reveals a crossover from a high-temperature localized to a
low-temperature heavy-fermion (HF) state in which f
electrons are delocalized with enormous effective mass
and are remarkable to undergo a superconducting (SC)
transition with a line-node gap, indicative of the Cooper
pairing of heavy fermions with an angular momentum
greater than zero. It is widely believed that the super-
conductivity in these materials is mediated by magnetic
fluctuations.

Recently, the HF-like behavior or a quadrupolar order-
ing has been reported in PrInAg2 [1], PrFe4P12 [2–5], and
PrPb3 [6–9]. In these compounds, the ground state of a
Pr3�with 4f2 in a crystal electric field (CEF) scheme is
believed to be the �3 nonmagnetic doublet with the elec-
tric quadrupolar moments for a total angular momentum
J � 4 state. The quadrupolar moments interact with
the charges of conduction electrons, leading to the
HF-like behavior or the quadrupolar ordering in these
Pr-based compounds. In fact, PrPb3 shows an antiferro-
quadrupolar ordering in the �3 ground state at 0.4 K
[6–9]. In PrInAg2, a broad peak in specific heat is iden-
tified as a Kondo anomaly, having an enhanced electronic
specific heat coefficient 	� 6:5 J=molK2 [1]. Likewise,
the filled-skutterudite compound PrFe4P12 shows the HF-
like behavior with a large mass of m� � 70me [2] under a
magnetic field and undergoes an anomalous transition at
6.4 K at zero field, indicative of a quadrupolar ordering
[3–5]. Note that the large values in C=T for these com-
pounds are due not only to such low-energy degrees of
freedom as either magnetic or quadrupolar fluctuations,
but also to the Schottky anomaly originating from some
low-lying CEF splitting.

Meanwhile, Bauer et al. reported the observation of HF
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Pr-based HF superconductor [10,11]. Its HF state was
inferred from the jump in the specific heat at Tc, the slope
of the upper critical field near Tc, and the electronic
specific heat coefficient 	� 350–500 mJ=molK2. The
magnetic susceptibility, thermodynamic measurements,
and inelastic neutron scattering experiments revealed
the ground state of the Pr3� ions in the cubic CEF to be
the �3 nonmagnetic doublet [10–12]. In the Pr-based
compounds with the �3 ground state, the quadrupolar
interactions play an important role. In analogy with the
quadrupolar Kondo model [13], it was suggested that the
HF-like behavior exhibited by PrOs4Sb12 may be relevant
to a quadrupolar Kondo lattice. An interesting issue to be
addressed is what the role of Pr3�-derived quadrupolar
fluctuations plays in relevance with the onset of the super-
conductivity in this compound.

In this Letter, we report the observation of unconven-
tional SC property probed by the nuclear-spin-lattice-
relaxation time, T1, in PrOs4Sb12 through 121;123Sb
nuclear quadrupolar resonance (NQR) experiments at zero
field. Single crystals of PrOs4Sb12 were grown by the Sb-
flux method as described elsewhere [14]. Measurements
of electrical resistivity and ac susceptibility confirmed a
SC transition at Tc � 1:85 K. The observation of the
de Haas–van Alphen oscillations ensures the high quality
of the samples [14]. For the 121;123Sb NQR measurements,
the single crystals were crushed into powder.

Figure 1(a) displays 121;123Sb-NQR spectra for two
Sb isotopes at 4.2 K. 121Sb �123Sb� with natural
abundance 57.3% (42.7%) has the nuclear spin I � 5=2
(7=2) and the nuclear gyromagnetic ratio 	N �
10:189 �5:5175� �MHz=T�, and exhibits two (three)
NQR transitions. The nuclear electric quadrupole inter-
action is represented as H Q � e2qQ

4I�2I�1� f	3I
2
z � I�I �
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FIG. 1. (a) 121Sb and 123Sb-NQR spectra in PrOs4Sb12. The
respective electric quadrupole frequencies are estimated as
121�Q � 44:2 MHz and 123�Q � 26:8 MHz, and an asymmetry
parameter as �� 0:46. (b) T dependence of the NQR spectrum
for the 2�Q of 123Sb. The peak in the spectrum shifts signifi-
cantly to the high frequency upon cooling below T0 � 10 K.
(c) T dependence of the relative change in the electric field
gradient (EFG), 	q�T� � q0
=q0 at the Sb nuclei. Here 	q�T� �
q0
=q0 � 	�Q�T� � �0
=�0 with the �0 at 10 K.

P H Y S I C A L R E V I E W L E T T E R S week ending
17 JANUARY 2003VOLUME 90, NUMBER 2
the charge distribution of conduction electrons around the
Sb nuclei. The ratio of the nuclear quadrupolar moment,
123Q=121Q, was reported as �1:275 from the NQR mea-
surement of the pure Sb metal [15]. From these spectra,
the values of nuclear quadrupole frequency, 121�Q �
44:2 MHz and 123�Q � 26:8 MHz, are deduced for
PrOs4Sb12 along with an asymmetric parameter ��
0:46. Here �Q � 3e2qQ

2I�2I�1� . Figure 1(b) indicates the T de-
pendence of the 123Sb-NQR spectrum arising from the
2�Q transition. The peak of the spectrum shifts to a high
frequency below T0 � 10 K that is shown later to be a
characteristic temperature also in 1=T1. Since the transi-
tions of 2�Q and 3�Q are not sensitive to the change in �,
almost the same relative variations of EFG, 	q� q0
=q0,
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against the value q0 at 10 K are obtained from the 2�Q for
123Sb and 2�Q and 3�Q for 121Sb, using a relation of
	�Q�T� � �0
=�0 as shown in Fig. 1(c). Here �0 is the
value of �Q at 10 K. The rapid increase in EFG at the Sb
site is evident below T0 � 10 K. Such a distinct shift is
never seen in the isostructual LaOs4Sb12 at low T. It is
natural to ascribe this increase in EFG to the Pr3�-derived
change. This is because the electronic contribution in
specific heat divided by T, �C=T revealed a similar T
variation to the EFG. It was reported that the rapid
increase in �C=T is consistent with the energy scheme
of the 4f2�J � 4� state of Pr3� in the CEF; that is, the �3

nonmagnetic doublet is a ground state and the �5 mag-
netic triplet is a first excited state. The magnetic suscep-
tibility, inelastic neutron scattering, and specific heat
revealed the CEF energy splitting of �CEF � 7–11 K
between these two levels [10–12,16,17]. Therefore, the
electric quadrupole moments of this �3 ground state
interact with the charges of the conduction electrons in
the T range below T0 � 10 K because of T < �CEF. Thus
the significant increase below T0 in both �C=T
and the EFG at the Sb site is indicative of a low-lying
CEF splitting below T0 � 10 K, associated with the
Pr3��4f2�-derived ground state.

Figure 2 indicates the T dependence of 1=T1 measured
at 2�Q � 48:9 MHz for 123Sb along with the result in
LaOs4Sb12 (Tc � 0:75 K). T1 is uniquely determined by
the theoretical curve of nuclear magnetization where the
value of � is incorporated [18]. In the normal state, a
relation of T1T � const is valid in LaOs4Sb12, character-
istic for conventional metallic materials. By contrast, the
1=T1 in the normal state for PrOs4Sb12 is more strongly
enhanced than for LaOs4Sb12, showing a relaxation be-
havior similar to Ce-based HF systems reported thus far.
Since 1=T1 stays a constant in T � 10–20 K, the
4f-electron-derived moments behave as if localized.
With decreasing T below T0 � 10 K, 1=T1 decreases be-
cause of T < �CEF. In the localized regime at high T,
1=T1T / ��T�, where ��T� is a Curie-Weiss-like magnetic
susceptibility in the normal state. As a matter of fact, the
T dependence of 1=T1T, which is shown in Fig. 3, re-
sembles the measured susceptibility [10], which suggests
that the �3 is the ground state and the �5 is the first excited
state [10,11]. The relaxation behavior is thus consistent
with the other experiments suggesting �CEF � 7–11 K
[10–12,16,17]. In T lower than �4 K, however, this
CEF model is not valid.

The inset of Fig. 2 presents the T dependencies of
�1=T1�=	

2
N at the 2�Q � 48:9 MHz and the 3�Q �

78:6 MHz for 123Sb, and the 2�Q � 85:0 MHz for 121Sb.
All the data fall on one curve, demonstrating that the
relaxation process is magnetic in origin throughout the
measured T range. This result indicates that the ground
state is not always in a nonmagnetic regime where
the quadrupolar degree of freedom of nonmagnetic dou-
blet �3 is dominant, but �3 might be hybridized with
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FIG. 3. T dependence of 1=T1T for PrOs4Sb12. The data
below �4:2 K are reproduced by incorporating both the con-
tributions arising from the CEF effect and the formation of
heavy quasiparticles (see text). The dotted line in the inset
corresponds to the relation of �1=T1T�obs � �A=T� �
exp���CEF=kBT� � 0:7B. Here 1=T1T � 0:7 corresponds to
the Korringa relation for LaOs4Sb12. The latter is responsible
for the onset of the superconductivity.

FIG. 4. (a) �1=T1T�qp=�1=T1T�qp;n vs T plots at temperatures
lower than T � 4:2 K in both logarithmic scales. Here
�1=T1T�qp � �1=T1T�obs � �A=T� � exp���CEF=kBT� with
�CEF=kB � 8 K and �1=T1T�qp;n � 0:7B (see text). The inset
presents the clear decrease in �1=T1T�qp below T� � 2:3 K.
(b) Arrhenius plots of ln	�T1T�qp=�T1T�qp;n
 vs �Tc=T� are on
a linear line across Tc below T� � 2:3 K, giving rise to the
large value of isotropic energy gap with 2�=kBTc � 5:2.

FIG. 2. T dependence of 1=T1 at the 2�Q transition of 123Sb
for PrOs4Sb12 (closed circles) and LaOs4Sb12 (open circles).
The inset presents the T dependencies of 1=T1 ’s at the 2�Q
(48.89 MHz) and 3�Q (78.70 MHz) for 123Sb and the 2�Q
(85.03 MHz) for 121Sb where the respective data are divided
by the nuclear gyromagnetic ratio 123	2

N and 121	2
N . All these

data are consistent with each other, demonstrating the relaxa-
tion process is magnetic in origin.
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conduction electrons, making the magnetic relaxation
channel open even for T 
 �CEF. In such a case, the
relaxation process at low T may be described in terms
of the CEF channel and the quasiparticle’s one as follows:
�1=T1�obs � A� exp���CEF=kBT� � B� 0:7T, where
1=T1 � 0:7T corresponds to the Korringa relation for
LaOs4Sb12. The first term is the CEF contribution arising
from the first excited �5 triplet state and the second one
the quasiparticle’s one due to the hybridization between
the �3 state and conduction electrons. The dotted line
in the inset of Fig. 3 is a best fit obtained by assuming
�CEF=kB � 8 K [16] and B � 26:7 below �4 K. The
latter value allows us to estimate that the effective density
of state (DOS) for PrOs4Sb12 is �5:2 times larger than
that for LaOs4Sb12, because 1=T1T is proportional to the
square of the DOS. This value is quite consistent with
the result of 	 � 313–350 mJ=molK2 for PrOs4Sb12
[10,17] being 6 times larger than 	 � 56 mJ=molK2

for LaOs4Sb12 [19]. It is expected that the heavy-
quasiparticle state is realized through mixing between
the nonmagnetic �3 doublet state and conduction
electrons.

Next we deal with the SC property. In order to present
the T dependence of the quasiparticle part �1=T1T�qp at
low T, the CEF contribution is subtracted from the raw
data �1=T1T�obs as �1=T1T�qp � �1=T1T�obs � �A=T� �
027001-3
exp���CEF=kBT� with �CEF=kB � 8 K. Figure 4(a)
presents the T dependence of �1=T1T�qp=�1=T1T�qp;n be-
low T � 4:2 K, where �1=T1T�qp;n stays a constant in T �
2:3–4:2 K. Unexpectedly, �1=T1T�qp=�1=T1T�qp;n de-
creases over 3 orders of magnitude down to 0:3Tc without
any trace of coherence peak across Tc. Thus far, most Ce-
or U-based HF superconductors are used to show a power-
law behavior of 1=T1 � T3 at low temperatures, consistent
with a line-node SC gap [20,21]. The �1=T1T�qp in
PrOs4Sb12 does not, however, reveal a T2 dependence as
indicated by the solid line in Fig. 4(a). Instead, as pre-
sented in Fig. 4(b), it follows an exponential decrease
with �=kB � 4:8 K across Tc � 1:85 K. A recent �SR
experiment also suggests an isotropic energy gap [22].
The estimated large value of a SC gap with 2�=kBTc �
5:2 seems to be relevant with the observation of the large
027001-3
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jump �C=	Tc � 3 in the specific heat at Tc [17]. From the
T dependence of �1=T1T�qp below T� � 2:3 K that is
presented in the inset of Fig. 4(a) along with Fig. 4(b),
the isotropic SC gap for PrOs4Sb12 across Tc seems to
open up already below T� � 2:3 K in the normal state. As
a possible interpretation for this anomaly, some uncon-
ventional strong-coupling effect may give rise to pre-
formed pairs around T� before a bulk SC transition
takes place. Note that this T� is close to the temperature
at which C=T has a peak [17]. However, this interpreta-
tion remains still an issue, because other measurements
such as the electric resistivity and the static susceptibility
do not show any anomaly around T�.

Apparently, the anomalous relaxation behavior in
PrOs4Sb12 contrasts with a conventional one for an
s-wave case that is actually seen in the T dependence of
1=T1 for LaOs4Sb12 with Tc � 0:75 K in Fig. 2. Re-
markably, in this SC state, 1=T1 shows the large coher-
ence peak just below Tc, followed by the exponential
dependence with the gap size of 2�=kBTc � 3:2 at low
T. This clearly evidences that LaOs4Sb12 is the conven-
tional weak-coupling BCS s-wave superconductor. In a
strong-coupling regime, a significant suppression in the
coherence peak was reported in the s-wave superconduc-
tor [23]. In the HF superconductor PrOs4Sb12, however,
the absence of the coherence peak may be ascribed to the
combined effects of a precursory formation of gap in the
HF quasiparticle state at temperatures higher than Tc �
1:85 K and the large value of SC gap with 2�=kBTc � 5:2.
These anomalies may arise because the unconventional
strong-coupling effect to make pairs is relevant with the
quadrupolar degree of freedom.

Although the recent thermal-conductivity experiment
suggests a point-nodes gap [24], 1=T1 suggests that the
existence of any node in the SC gap is absent down to
0:3Tc. Unfortunately, 1=T1 saturates below 0:3Tc, pre-
venting us to make a more precise distinction on the
gap form. It is evident, however, as unraveled in this
work that the novel superconductivity takes place under
such a situation that the quadrupolar degree of freedom
plays a vital role in the formation of quasiparticles at
temperatures lower than �CEF � 7–11 K. We also remark
that Tc � 1:85 K for PrOs4Sb12 is much enhanced over
Tc � 0:75 K for LaOs4Sb12 and, furthermore, the Pr-
based superconductor PrRu4Sb12 (Tc � 1:3 K), which is
characterized by a singlet CEF ground state, is the weak-
coupling s-wave superconductor with 2�=kBTc � 3:1
[25]. Therefore, it raises a question of what type of pair-
ing interaction is possible in mediating the Cooper pair to
cause the unconventional strong-coupling superconduc-
tivity in PrOs4Sb12.

In summary, the T dependence of 1=T1T in the new HF
superconductor PrOs4Sb12 revealed that the 4f-derived
moments behave as if localized at the higher T than T0 �
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10 K. Below T0, the marked increase in NQR frequency
at the Sb site and the decrease in 1=T1 unraveled a low-
lying crystal-electric-field splitting, associated with the
Pr3��4f2�-derived ground state. In the lower T than �4 K,
the relaxation process is well accounted for by incorpo-
rating both of the CEF contributions arising from the first
excited �5 triplet state and the �T1T�qp � const contribu-
tion from the heavy-quasiparticle state.

In the SC state, 1=T1 shows neither the coherence peak
just below Tc nor the T3-like power-law behavior ob-
served for the anisotropic HF superconductors with the
line-node gap to date. We highlight that the HF super-
conductor PrOs4Sb12 reveals the very large and isotropic
energy gap 2�=kBTc � 5:2, indicative of a new type of
unconventional strong-coupling regime. It is very surpris-
ing to have an isotropic heavy-fermion superconductor—
it may indeed argue for Cooper pairing via quadrupolar
fluctuations.
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