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Strongly Correlated Fractional Quantum Hall Line Junctions
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We have studied a clean finite-length line junction between interacting counterpropagating single-
branch fractional quantum Hall edge channels. Exact solutions for low-lying excitations and transport
properties are obtained when the two edges belong to quantum Hall systems with different filling
factors and interact via the long-range Coulomb interaction. Charging effects due to the coupling to
external edge-channel leads are fully taken into account. Conductances and power laws in the current-
voltage characteristics of tunneling are strongly affected by interedge correlations.
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justed in magnitude and direction. In the experimentally ward to diagonalize the part HJ � dxH tun, and
Two-dimensional (2D) electron systems exhibit in-
compressibilities when their sheet density n0 is commen-
surate with the value B of perpendicular magnetic field
such that the filling factor � � 2� �hn0=jeBj is an integer
or equal to certain fractions [1,2]. Such an incompressible
phase is characterized by a quantized value of the Hall
resistance and low-lying excitations that are localized at
the boundary of the 2D system [3–7]. When � is the
inverse of an odd integer, these quantum Hall (QH)
edge excitations have been shown [8] to be isomorphous
to those of a single-branch chiral one-dimensional (1D)
electron system [9]. Similar to their nonchiral counter-
parts that are realized, e.g., in semiconductor quantum
wires [10] or carbon nanotubes [11], QH edges are ex-
pected [8] to exhibit power laws in electronic correlation
functions that are the hallmark of Luttinger-liquid behav-
ior [12]. Virtually no other quasi-1D electron system,
however, matches the versatility of QH edges in tailoring
their electronic properties which can be achieved, e.g.,
simply by adjusting the magnetic field and/or appropriate
nanostructuring techniques. Recent applications of the
cleaved-edge overgrowth method [13,14] have succeeded
in creating extended uniform tunnel junctions between
two integer QH edges [15] or a 2D electron system and a
QH edge [16]. Besides opening up new possibilities for
electron tunneling spectroscopy [17], these new sample
geometries enable the controlled experimental study of
the interplay between tunneling and interaction effects in
low dimensions [18–21] that cannot be performed in
conventional systems.

A diverse set of electron-correlation effects has been
proposed for QH line junctions where both edge channels
belong to QH systems having the same filling factor [22–
26]. In our work presented here, we consider the case of a
clean junction where the filling factors �R and �L, char-
acterizing the respective right-moving and left-moving
edges, are different. Such a situation could be realized,
e.g., in samples with two mutually perpendicular 2D
electron systems [16] and a magnetic field properly ad-
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realistic limit where electrons from the two edges interact
strongly via Coulomb interactions, low-lying excitations
are represented by two decoupled bosonic modes that
have opposite chirality. One of them, the charged mode,
corresponds to fluctuations in the total electron density in
the two edges and is free. The dynamics of its orthogonal
complement, the neutral mode, turns out to be governed
by realizations of chiral sine-Gordon models [27,28] that
can be solved exactly for certain values of the parameter
~�� � �R�L=j�R � �Lj. We use these exact solutions to
calculate transport through the line junction and find
that the strong interedge correlations significantly affect
the conductance and tunneling resonances arising from
translational invariance along the barrier.

The starting point of our calculations is the Hamil-
tonian for our model of the line junction (see Fig. 1).
It reads HJ �

RL=2
�L=2 dx �H R �H L �H int �H tun�,

where H R=L describe isolated edge channels, H int the
interedge interaction, and H tun uniform tunneling across
the barrier:

H R=L �
1

4�

�
�hv�0�R=L �

�R=L
2�

U
�
�@x�R=L�

2; (1a)

H int �

�����������
�R�L

p

4�2 �U@x�R@x�L; (1b)

H tun � tf y
R�x� L�x� � H:c:g: (1c)

Here we denote the second-quantized annihilation oper-
ators for electrons from the two edges as  R=L. The chiral
bosonic phase fields �R=L�x� are related to the respective
edge densities via %R=L �  y

R=L R=L �
�����������R=L

p @x�R=L=
�2�� and obey the commutation relations ��R=L�x�;
�R=L�x0�� � �i� sgn�x� x0�. The bare (confinement-
induced) electron velocities in the two edge channels
are given by v�0�R=L, U is the matrix element of screened
Coulomb interactions, and we have taken into account the
generally different interaction strengths within and be-
tween the edges by a factor 0< � � 1. It is straightfor-RL=2

�L=2
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FIG. 1. Schematic layout of a quantum Hall line junction. An
extended uniform tunnel barrier couples counterpropagating
single-branch edge channels from two 2D electron systems that
have different fractional filling factors �R and �L (see panel a).
We model this situation by two parallel infinite chiral frac-
tional edge channels that are coupled via uniform tunneling
and Coulomb interactions along the finite junction region where
jxj � L=2. Outside the junction, edge branches correspond to
leads connecting to external reservoirs.
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using the bosonization identity [29]

 R=L�x� �
���������
zR=L

p
F R=Le

ix�YR=L=‘2��i��R=L�x�=��R=L�1=2�; (2)

the tunneling term H tun can be expressed solely in terms
of bosonic phase fields as well. [In Eq. (2), zR=L are
normalization constants, F R=L Klein factors, YR=L the
guiding-center coordinates of edge electrons in the direc-
tion perpendicular to the junction, and ‘ �

�����������������
�hc=jeBj

p
the

magnetic length.] However, explicit expressions for nor-
mal modes in the most general case are unilluminating.
We therefore proceed immediately to the special case of
interest to us where strong Coulomb interactions domi-
nate the bare electron velocities in each branch, i.e.,
�hv�0�R=L � U, and the distance between the two edges is
of the order of or smaller than ‘ such that �! 1. It is then
possible to rewrite the QH-junction Hamiltonian as HJ �RL=2
�L=2 dx�H c �H n� with the contributions

H c �
�hvc
4�

�@x�c�
2; (3a)

H n �
�hvn
4�

�@x�n�
2 � 2t

����������
zRzL

p
cos

�
�n����
~��

p �
x�

‘2

�
; (3b)

for independent c(harged) and n(eutral) modes [30]. Their
corresponding phase fields obey commutation relations
��c=n�x�; �c=n�x

0�� � � sgn��R � �L� i� sgn�x� x0� and
are related to the densities of the original right-moving
and left-moving edge electrons via

%R=L �
�sgn��R � �L�

2�
���������������������
j�R � �Lj

p ��R=L@x�c �
�����������
�R�L

p
@x�n�: (4)

The velocities are vc � j�R � �LjU=�2� �h� and vn �
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��Rv
�0�
L � �Lv

�0�
R �=j�R � �Lj, and we used the abbrevia-

tion � :� YR � YL. We see from Eqs. (3) that the charged
mode is free while the neutral-mode dynamics is that of a
chiral sine-Gordon model [27,28]. Before obtaining its
solution, we interject an elaboration on observables re-
lated to electron transport.

To discuss transport properties, it is necessary to con-
sider continuity equations and chemical potentials for the
various edge densities. Denoting time by �, the operator
for particle current (per unit length) across the barrier is

I J�x� � �
d
d�
%R�x� �

d
d�
%L�x�; (5a)

� i
t
�h
f y

R�x� L�x� � H:c:g; (5b)

In our limit of interest, its bosonized expression depends
on the neutral mode only,

I J�x� � 2
t
�h

����������
zRzL

p
sin

�
�n����
~��

p �
x�

‘2

�
: (6)

It is straightforward to find a continuity equation for
density %c :� @x�c=�2�� associated with the charged
mode,

0 �
d
d�

%R � %L���������������������
j�R � �Lj

p �
d
d�
%c; (7a)

� f@� � sgn��R � �L�vc@xg%c; (7b)

and the corresponding one for %n :� @x�n=�2��,

0 �
d
d�
%n �

sgn��R � �L�����
~��

p I J; (8a)

� f@� � sgn��R � �L�vn@xg%n: (8b)

In the stationary regime, densities have no explicit time
dependence. The above continuity equations then imply
that they assume constant values �%%c=n along the junction.
We can also derive expressions for local chemical poten-
tials �c=n :� �HJ=�%c=n � �isgn��R � �L��HJ; �c=n� as-
sociated with the charged and neutral modes:

�c�x� � 2� �hvc%c�x�; (9a)

�n�x� � 2� �hvn%n�x� �
� �h����
~��

p
Z L=2

�L=2
dx0I J�x0�sgn�x� x0�:

(9b)

Specializing these to the stationary limit, we find

�c�x� � 2� �hvc �%%c

� const; (10a)

�n��L=2� � 2� �hvn �%%n �
� �h����
~��

p IJ; (10b)

where IJ :�
RL=2
�L=2 dxI J�x� is the total current flowing

through the junction. The values of �%%c=n and IJ can be
related to chemical potentials in the external leads that
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connect the QH junction to reservoirs (see Fig. 1), which
we proceed to show now.

In a real setup as sketched in Fig. 1(a), edge channels
away from the junction are not coupled via tunneling or
interactions anymore. However, for each of these chiral
1D leads, Coulomb interactions between electrons at the
same edge still give the dominant contribution to the
edge-magnetoplasmon velocity [31]. We therefore model
the dynamics of electrons in regions jxj > L=2 by the
lead Hamiltonian HE � f

R
�L=2
�1 �

R
1
L=2gdx�H R �H L�.

While HE is not diagonal in the charged and neutral
modes, their corresponding chemical potentials are still
well defined in the lead regions. As the densities in each
of the four chiral edge-channel leads cannot change,
chemical potentials remain constant as well [32]. Assum-
ing again U � �hv�0�R=L, we find for these (in a compact
notation where �i=j means �i or �j, respectively)

�cjx+�L=2 �
�R�1=2 � �L�4=3���������������������

j�R � �Lj
p sgn��R � �L�; (11a)

�njx+�L=2 � �
����
~��

p
��1=2 ��4=3�sgn��R � �L�: (11b)

Demanding continuity of �c=n at x � �L=2 yields four
linear relations involving the chemical potentials in the
four leads, the constants �%%c=n, and IJ. After some straight-
forward algebra, we obtain the expressions

�2=4 � �1=3 �
2� �h
�R=L

IJ; (12a)

vc �%%c �
�R�1 � �L�3 � 2� �h IJ

2� �h
���������������������
j�R � �Lj

p sgn��R � �L�; (12b)

vn �%%n �
�1 ��3 � �� �h

�R
� � �h

�L
� IJ

�2� �h=
����
~��

p sgn��R � �L�; (12c)

relating the ‘‘output’’ chemical potentials �2=4 as well as
the constants �%%c=n to the experimentally adjustable ‘‘in-
put’’ chemical potentials �1=3 and the a priori unknown
current IJ [33]. To obtain the full solution for the transport
problem of our finite QH junction that is attached to edge-
channel leads, we are now left with the task to determine
�%%n and IJ self-consistently using the dynamics of the
neutral mode expressed in Eqs. (3b), (6), (9b), and
(12c). We now show how this can be achieved.

The Hamiltonian of the neutral mode [given by
Eq. (3b)] is a realization of recently discussed [27,28]
chiral sine-Gordon models. In contrast to the well-known
nonchiral sine-Gordon model [34], the quantum character
of its dynamics arises because the bosonic field entering
the cosine term does not commute with itself. Possible
values of the parameter ~�� for the QH line junction dis-
cussed here can be parametrized by two non-negative
integers m;m0 such that 1=~�� � 2jm�m0j. These values
correspond to QH junctions between systems having fill-
ing factors 1=�2m� 1� and 1=�2m0 � 1�, respectively. It
has been shown [28] that the cosine term constitutes only
026802-3
an irrelevant perturbation to the dynamics of the chiral
bosonic field when jm�m0j > 2. More interesting, and
easier to realize experimentally, are the two cases 1=~�� 2
f2; 4g where the cosine term turns out to be relevant or
marginal, respectively, and exact solutions for its dynam-
ics can be found [27,28].

Let us first consider the case ~�� � 1=2 realized, e.g.,
at a line junction between QH systems having filling
factors 1 and 1=3, respectively. Introducing an auxiliary
chiral boson field #�x� that has the same chirality and
velocity as �n, we can define fictitious chiral fermion
operators �"=# via an inverse bosonization identity �$ /
expf�i sgn��R � �L��#� $�n�=

���
2

p
g. Note that the pseu-

dospin degree of freedom indexed by $ is not related to
the spin of the original electrons in the sample. In the new
fictitious-fermion degrees of freedom, Eqs. (3b) and (6)
are quadratic:

H 0
n �

X
$

�y
$�isgn��R � �L� �hvn@x��$

� t��y
" �#e

i�x�=‘2� sgn��R��L� � H:c:�; (13a)

I 0
J �� i

t
�h
��y

" �#ei�x�=‘
2� sgn��R��L� � H:c:�: (13b)

In addition, density and chemical potential of the neutral
mode are related to corresponding fictitious-fermion
quantities via �y

" �" ��y
# �# �

���
2

p
%n and �" ��# ����

2
p
�n. Note that only the pseudospin sector of the new

fermionic theory has any bearing for real observations,
while the pseudocharge sector described by the auxiliary
field # is hidden. We see that the problem of the original
line junction between two strongly interacting edge
branches with opposite chirality has been mapped onto
that of tunneling between two branches of noninteracting
and chiral fermions. The latter is readily solved using
standard methods. For example, when tunneling is weak
enough such that it is possible to neglect the contribution
/ IJ in Eq. (12c), we find e2IJ � GJ��1 ��3� with the
linear electric conductance

GJ �
e2

2� �h

sin2��LLt

��������������
1� &2

p
�

1� &2
: (14)

Here Lt � � �hvn=jtj is a fundamental length scale set by
tunneling and & � �hvn�=�2jtj‘2� a resonance parameter:
GJ is maximal for &! 0 which corresponds to the reso-
nance condition where both energy and 1D momentum
are conserved in a tunneling event [35]. The obtained
linear dependence of IJ on �1 ��3 has to be contrasted
with the power law IJ / ��1 ��3�

��1
R ���1

L �1 that is to be
expected for momentum-resolved tunneling at a line
junction between noninteracting chiral-Luttinger-liquid
[8] edge channels. Furthermore, chirality of the effective
tunneling problem described by Eqs. (13) results in charge
oscillations along the junction similar to those pre-
dicted for QH bilayer systems [28] and parallel quantum
wires [36].
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Before concluding, we discuss the other nontrivial
case ~�� � 1=4 which is realized, e.g., when �R � 1
and �L � 1=5. Again it is possible to solve the problem
by refermionization [28]. Defining  n�x� �

�����
zn

p
F n �

expf�isgn��R � �L���n�x� � x�=2‘2�g and using the
identity [28]  n�x�i@x n�x� � 2�sgn��R � �L�z2nF 2

n �
expf��2i�n�x� � ix�=‘2�g, we can rewrite Eqs. (3b)
and (6) as quadratic forms in the fictitious chiral Dirac
fermion  n. It turns out to be useful to utilize its de-
composition in terms of Majorana fermions,  n �
�'� � i '��=

���
2

p
, which yields

H 00
n �

1

2

X
r��

'r�i �hvr@x�'r �
�hvn�

‘2
i'�'�; (15a)

I 00
J �

�i~tt
2� �h

sgn��R � �L��'�@x'� � '�@x'��; (15b)

where v�� sgn��R��L��vn�~tt=�� with ~tt� t
����������
zRzL

p
=z2n.

The Hamiltonian H 00
n is easily diagonalized, and the

occupation-number distribution for Majorana fermions
in reciprocal space is fixed by the requirement i'�'��
�))n. The transport problem can then be solved exactly
again. A complete analysis is left to a later publication
[37]; here we can mention only results for ��0 and in
the limit of weak tunneling where it is possible to neglect
the contribution proportional to IJ in Eq. (12c). Quite
different from the above considered case of ~���1=2, we
find here that IJ is oscillating in time with period
2���h�2vn=�~ttj�1��3j�. A similar dephasing effect as
observed [38] in QH line junctions where �R��L�1
leads to the temporal decay of the oscillation amplitude.

In summary, we have obtained exact solutions for
transport through finite QH line junctions where the
two edge channels belong to systems having different
filling factors �R and �L. Charging effects have been
treated fully self-consistently by imposing appropriate
boundary conditions for chemical potentials in the at-
tached edge-channel leads. Strong coupling of edge chan-
nels via Coulomb interactions in a junction with ~�� �
�R�L=j�R � �Lj � 1=2 gives rise to a linear IVcharacter-
istics for tunneling, as opposed to the power law expected
in the absence of interedge correlations. At junctions with
~�� � 1=4, tunneling currents oscillate in time.
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