Magnetic Properties of C₆₀ Polymers

Antonis N. Andriotis*

Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklio, Crete, Greece

Madhu Menon[†]

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 40506-0045

R. Michael Sheetz[‡]

Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 40506-0045

Leonid Chernozatonskii[§]

Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 117977, Russian Federation (Received 23 May 2002; published 16 January 2003)

Magnetic properties of various C_{60} polymers are calculated using tight-binding molecular-dynamics and *ab initio* methods. Our results suggest a mechanism involving an interplay between structural defects and sp^3 hybridization to be responsible for the origin of this magnetism. The onset of magnetism is found to occur much more readily for the Rh-C₆₀ polymeric phase with defects than for any of the other polymers, in agreement with the recent experiment. Our estimate of the magnetic moment is also in very good agreement with the value observed in experiment.

DOI: 10.1103/PhysRevLett.90.026801

PACS numbers: 73.50.-h, 73.23.Hk, 73.61.Wp, 81.10.Aj

The discovery of C_{60} cages with perfect icosahedral (I_h) symmetry [1] has sparked tremendous interest in pure carbon compounds. This has led to extensive studies of fullerene based carbon solids [2]. The molecules in solid C_{60} form a face centered cubic lattice (fcc) at room temperature with weak van der Waals type bonding between the molecules [2]. When exposed to visible or ultraviolet light, this molecular C_{60} solid was observed to undergo a phase transformation resulting in a polymerized state in which the molecules are covalently bonded to each other [3]. Polymeric forms can also be obtained using high-pressure and high-temperature treatment of the van der Waals C_{60} solid. Polymeric solids have been synthesized in one-, two- and three-dimensions.

Very recently, Makarova *et al.* [4] have reported the discovery of spontaneous magnetization in 2D polymeric C_{60} . The magnetization is found to persist above room temperatures and up to 500 K. Magnetism in nonmetallic molecular materials is a welcome phenomenon from a technological perspective since these materials are usually less expensive to produce than their metallic counterparts. Furthermore, calculations suggest that a high attainable specific magnetization value (i.e., the magnetization/density ratio) may exist for these materials that may exceed that of α -Fe [5]. Experiments have also confirmed the existence of magnetism in other carbon-based materials [e.g., activated carbon fibers (ACFs), fluorinated graphite, carbon foam [6–8]].

Makarova *et al.* [4] have attempted to investigate the magnetic properties of the C_{60} polymer with a view to explain the origin of the observed magnetism. Their

measurements showed no evidence of ferromagnetic behavior in either their pristine fullerene powder or depolymerized samples, prompting them to rule out impurity effects as the possible cause of magnetism. The magnetic behavior is, therefore, attributed to the intrinsic properties of the C_{60} polymer, such as ordered defect moments or itinerant ferromagnetism.

Despite the increasing experimental evidence for the existence of magnetism in various carbon-based materials, the precise mechanism for its origin is not well understood. The corresponding theoretical investigations [5,9–11] have been focused mainly on determining the most probable mechanisms that can lead to unpaired electrons and to their mutual interactions. Among the proposed mechanisms associated with the origin of magnetic carbon phases, two have been quite promising. The first is associated with the unpaired electrons that are provided by the edge carbon atoms (ECAs) of nanographitic particles. The other is attributed to the presence of carbon vacancies. In both mechanisms, one can underline the same basic ingredient. That is, the transformation of sp^2 to sp^3 orbitals in combination with some structural reconstruction. In particular, ECAs of nanographitic layers are found to contribute to carbon magnetism when the nanographitic layers in the particle are stacked in such a way that each graphene layer is relatively shifted with respect to the underlying one [9].

In polymeric carbon reported by Makarova *et al.*, magnetism has been found in the 2D rhombohedral C_{60} (Rh- C_{60}) phase but not in the 1D orthorhombic and the 2D tetragonal C_{60} polymers; it has been attributed to

polymerization and most probably to deviations from the conventional polymerization process and the presence of defect patterns in the polymerized network [4]. The latter explanation was supported by the fact that strong magnetic properties were observed only in Rh-C₆₀ prepared at 1020-1050 K (that is, close to its stability limit). On the other hand, the presence of a carbon defect in the graphene lattice has been found to impose an in-plane relaxation and accommodate an extra charge giving rise to an unpaired spin [10].

In this Letter, we report results of our calculations of magnetic moments in low dimensional polymeric forms of C_{60} in the presence of defects. Calculations are carried out using our tight-binding molecular-dynamics (TBMD) scheme incorporating the Hubbard approximation that allows dynamic simulations of magnetic properties in materials [12]. It has been shown that exchange-correlation effects beyond the conventional local density approximation (LDA) treatment might be important for the investigation of vacancies in carbon [13]. Studies incorporating electron correlations at the level of the Hubbard approximation have demonstrated the effectiveness of this approximation in the study of low-dimension carbon structures [14–17]. This is further supported by our recent TBMD studies on these systems [18]. Our TBMD method includes use of s, p, and dorbitals in order to provide the correct description of interatomic interactions in systems consisting of semiconductor and transition metal atoms as well as their heterosystems.

We consider 2D (rhombohedral and tetragonal) and 1D (orthorhombic) C_{60} polymers containing a mixture of sp^2 and sp^3 bonded carbon atoms. We also consider an all sp^2 1D C_{60} polymer. All structures are fully optimized without any symmetry constraints using our TBMD scheme. The relaxed structures are shown in Fig. 1. The infinite polymers are simulated using supercells with periodic

FIG. 1. Various 2D and 1D polymeric solids formed from C_{60} . All structures are fully relaxed using the TBMD method. (a)–(c) contain mixed sp^2 and sp^3 bonded carbon atoms. Linear C_{60} polymer with only sp^2 bonding is shown in (d).

boundary conditions. A constant pressure ("movable wall") ensemble is incorporated into the supercell formalism that allows for a simultaneous relaxation of lattice and basis degrees of freedom [19]. A uniform grid consisting of 126 *k*-points were used in the calculation of forces. Magnetic moments are then calculated for all relaxed structures for different values of the magnetization (the intra-atomic exchange splitting) term, s_0 . We next investigate how the magnetic properties change in the presence of defects. We create vacancies by removing one carbon atom per C₆₀ unit in each of the structures in Fig. 1. Magnetic moments are calculated for the same set of s_0 values as used in the absence of defects after the structures are fully relaxed using the TBMD scheme.

Our results are summarized in Table I. From these it is observed that all structures exhibit magnetic ground states for values of the s_0 term exceeding a threshold value s_0^{th} (lowest s_0 value). These results are in agreement with the findings of Bergomi *et al.* [16], who found that the C₆₀ fullerene and C₁₂ tetrahedron exhibit a magnetic instability for $U = U_{\text{th}}$; for $U \ge U_{\text{th}}$, these systems exhibit a magnetic ground state which is like a generalized spin density wave (SDW) state. Our symbol s_0 is approximately related to Hubbard-U by the relation

$$s_0 = U\langle \mu \rangle / 2, \tag{1}$$

where $\langle \mu \rangle$ is the average magnetic moment per carbon atom. As Table I shows, the s_0 value depends sensitively on the structural details of the polymer. More importantly, structures with vacancies show substantial decrease in the s_0^{th} when compared with their defect free counterparts. The lowest value of s_0^{th} is attained for the Rh-C₆₀ structure with vacancies.

Using the spin concentration value obtained from electron spin resonance data Makarova *et al.* estimated the magnetic moment per electron to be $0.4 \mu_{\rm B}$, where $\mu_{\rm B}$ is the Bohr magneton. Their sample had a mass of 3.2 mg. Using these data and the data given in their Fig. 3(a), the magnetic moment per C₆₀ unit for their sample is ≈ 0.65 bohr magnetons. Substituting this value along with the Hubbard-U value ($\approx 10 \text{ eV}$ [14]) in Eq. (1) we obtain $s_0 = 0.05 \text{ eV}$ per atom for their sample. This is in very good agreement with our s_0^{th} value (0.03 eV) for the Rh-C₆₀ in Table I.

TABLE I. Values of s_0^{th} (in eV) for different structures considered in this work.

	s ₀ th	
Structure	No vacancy	With vacancy
Rh-C ₆₀ [Fig. 1(a)]	0.85	0.03
Tetragonal C ₆₀ [Fig. 1(b)]	1.0	0.20
Linear A C ₆₀ [Fig. 1(c)]	0.70	0.10
Linear B C ₆₀ [Fig. 1(d)]	0.80	0.70

Our calculations, thus, give strong support to the role of vacancy in the generation of magnetic moment. While unpaired spins can result from vacancy formation, we must also consider other factors. The sp^2 - sp^3 rehybridization resulting from the 2+2-cycloaddition mechanism at the interfaces may also give rise to unpaired spins. Because of the peculiarly high symmetry of the C_{60} molecule, both the Rh- C_{60} and the tetragonal C_{60} polymers contain a mixture of sp^2 and sp^3 atoms. This is not the case in the 1D polymers, however. While Fig. 1(c) shows a linear C_{60} polymer with mixed sp^2 and sp^3 bonding (dominant structural unit in photopolymerized C₆₀, for which ferromagnetic properties have been reported [20]), another linear C₆₀ polymer containing only sp^2 bonding is shown in Fig. 1(d). It should be noted, however, that the structure in Fig. 1(d) is hypothetical and has never been observed, in contrast to the other three. As seen in Table I, the s_0^{th} value for the all sp^2 linear structure (Fig. 1(d)) is much higher than that for the mixed case. This suggests an interplay between vacancy and sp^2 - sp^3 hybridization rather than vacancy alone being responsible for magnetization.

We explore this interplay in more detail by performing an *ab initio* study of the electronic distribution in the Rh-C₆₀ polymer in the presence of vacancies and compare it with the defect free case. The Rh-C₆₀ polymer with defects is shown in Fig. 2. The atoms surrounding the vacancy are shown in red, while the sp^3 atoms participating in the intermolecular linkage are shown in green. The *ab initio* calculations were performed using the GAUSSIAN 98 program [21].

In the defect free case there is an accumulation of excess negative charge ($\approx 0.5e$) in the four atoms participating in intermolecular linkage between each pair of

FIG. 2 (color). 2D rhombohedral C_{60} (Rh- C_{60}) polymer with one vacancy per C_{60} unit. The atoms surrounding the vacancy are shown in red, while the sp^3 atoms are shown in green.

 C_{60} cages (all sp^3). Furthermore, the occupancy of p_7 orbitals is considerably higher than those of the p_x and p_{y} orbitals for these same atoms (z direction is taken to be perpendicular to the plane of the polymer). Neither the charge nor the p_z occupancy changes significantly after the creation of vacancy. The situation is considerably different, however, for the three atoms surrounding the vacancy in each C_{60} unit. They acquire excess positive charge ($\approx 0.5e$) when compared with the defect free case. Creation of the vacancy leads to the appearance of excess spin density and nonzero spin magnetic moment associated with each C₆₀ molecule. The accumulation of excess negative charge on the fourfold coordinated atoms forming the intermolecular link and an almost equal and opposite charge on the atoms surrounding the vacancy gives rise to an electric dipole moment. Our ab initio calculations give a dipole moment of magnitude 2.264 Debye per C₆₀ unit for this system.

Our findings are in agreement with the generally accepted theory [22] according to which the origin of spins in carbon materials composed of sp^2 and sp^3 C-C bond network is attributed to the σ dangling bonds. The interfullerene (2 + 2)-cycloaddition processes can contribute to unpaired electrons by promoting them to higher orbitals enabling them to participate in the magnetic ordering. As pointed out by Makarova et al. [4], the interfullerene bonds are directed at angles different from the bond angle in diamond and are considerably less bound with dissociation energy only one-half of the diamond bond. The weakly bound electron can be readily available to participate in the magnetic ordering. However, in order for ferromagnetic coupling to occur there should be correlation between these spin moments. The spin moments here are sufficiently far apart and, therefore, the ferromagnetic coupling must be an indirect one requiring mediation. In the present case the dipole moment induced by the vacancy provides this mediation. The electrostatic interactions (i.e., Coulomb interactions between localized excess charges and between electric dipoles), thus, provide an effective exchange pathway for the intersite coupling of the spin magnetic moments. This mechanism may be considered analogous to the McConnell model [23] for intermolecular coupling.

The structural dependence of s_0^{th} is worth a look. It is reasonable to expect an inverse relationship between concentration of interfullerene bonds and s_0^{th} ; i.e., the larger the concentration of these bonds, the lower the s_0^{th} value. The s_0^{th} values for the tetragonal [Fig. 1(b)] and linear [Fig. 1(c)] polymers in Table I seem to contradict this assumption. It must be noted, however, that in the tetragonal case the planes formed by the pair of interfullerene bonds in the y direction is perpendicular to the planes formed in the x direction. The corresponding spin contributions are also directed perpendicular to each other in the two orientations. Further insight can be gained by an investigation of the electronic band structure details of $Rh-C_{60}$ and tetragonal- C_{60} . The highest occupied molecular orbital (HOMO) of $Rh-C_{60}$ is found to be doubly degenerate while that of tetragonal- C_{60} does not appear to be degenerate [24]. These observations suggest that the proposed mechanism for the intermolecular coupling in the magnetic $Rh-C_{60}$ may be viewed in terms of a generalized flat band magnetism [25].

In summary, we have performed calculations of electronic and magnetic properties of various 2D and 1D polymers formed from C_{60} cages using tight-binding molecular-dynamics and *ab initio* methods. Our results indicate that onset of magnetism is found to occur much more readily for the Rh-C₆₀ polymeric phase with defects than for any of the other polymers, in agreement with recent experiments. Our estimate of the magnetic moment is in very good agreement with the value observed in experiment. We have also offered a plausible mechanism for the origin of magnetism observed in experiment for these materials.

The present work is supported through grants by NSF (NER-0165121, ITR-0266277), DOE Grant No. 00-63857, NASA Grant No. 02-465679, EU-GROWTH research project AMMARE (Contract No. G5RD-CT-2001-00478), and the University of Kentucky Center for Computational Sciences. L. C. acknowledges support from RSTP grant (INTAS Grant No. 00-237) under the title "Topical Directions in Condensed Matter Physics."

Note added.—After the submission of our manuscript a new review article by Makarova (first author of the original paper reporting the finding of magnetism in C_{60} polymers, Ref. [4]) has appeared [26]. The article reports TEM images showing that the samples are polymeric and crystalline in nature with negligibly small and undetectable amount of wracked fullerenes. Our model of periodically arranged defects in a stable crystalline structure, thus, satisfies the two conditions necessary for the fullerene network to become ferromagnetic: highly oriented structure and the presence of unpaired spins.

*Electronic address: andriot@iesl.forth.gr [†]Electronic address: super250@pop.uky.edu [‡]Electronic address: rmshee0@email.uky.edu [§]Electronic address: cherno@sky.chph.ras.ru H W Kroto L R Heath S C O'Brien R I

- H.W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature (London) **318**, 162 (1985).
- [2] P.C. Eklund and A. M. Rao, Fullerene Polymers and Fullerene Polymer Composites, Springer Series in Material Science Vol. 38 (Springer, New York, 2000).

- [3] A. M. Rao et al., Science 259, 955 (1993).
- [4] T. L. Makarova, B. Sundqvist, R. Hohne, P. Esqulnazi, Y. Kopelevich, P. Scharff, V. A. Davidov, L. S. Kashevarova, and A. V. Rakhmanina, Nature (London) 413, 716 (2001).
- [5] A. A. Ovchinnikov and I. L. Shamovsky, J. Mol. Struct. (Theochem) 83, 133 (1991).
- [6] A.V. Rode, R.G. Elliman, E.G. Gamaly, A.G. Christy, S.T. Hyde, B. Luther-Davies, A. I. Veinger, S. Bulcock, and D. R. McKenzie (to be published).
- [7] N. Kobayashi, T. Enoki, C. Ishii, K. Kaneko, and M. Endo, J. Chem. Phys. **109**, 1983 (1998).
- [8] M. Panich, A. I. Shames, and T. Nakajima, J. Phys. Chem. Solids 62, 959 (2001).
- [9] K. Harigaya, Chem. Phys. Lett. 340, 123 (2001).
- [10] M. Hjort and S. Stafstrom, Phys. Rev. B 61, 14089 (2000).
- [11] K. Wakabayashi, M. Fujita, and H. A. M. Sigrist, Phys. Rev. B 59, 8271 (1999).
- [12] A. N. Andriotis and M. Menon, Phys. Rev. B 57, 10069 (1998).
- [13] A. Zywietz, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 62, 6854 (2000).
- [14] A. A. Farajian, K. Esfarjani, and Y. Kawazoe, Phys. Rev. Lett. 82, 5084 (1999).
- [15] K. Harigaya, Phys. Rev. B 60, 1452 (1999).
- [16] L. Bergomi, J. P. Blaizot, T. Jolicoeur, and E. Dagotto, Phys. Rev. B 47, 5539 (1993).
- [17] M. P. Lopez-Sancho, M. C. Munoz, and L. Chico, Phys. Rev. B 63, 165419 (2001).
- [18] A. N. Andriotis, M. Menon, G. Froudakis, and J. E. Lowther, Chem. Phys. Lett. **301**, 503 (1999).
- [19] H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).
- [20] Y. Murakami and H. Suematsu, Pure Appl. Chem. 68, 1463 (1996).
- [21] M. J. Frisch *et al.*, computer program GAUSSIAN 98 (Revision A.11), 1998.
- [22] See, for example, Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev. Lett. 84, 1744 (2000), and references therein.
- [23] H. M. McConnell, Proc. R. A. Welch Found. Conf. Chem. Res. 11, 144 (1967).
- [24] The band structures (calculated for the structures containing vacancies at the Hubbard-U approximation using the s_0^{th} values) are found to be almost flat near the Fermi energy along the Γ -M, X direction for both the hexagonal and square structures. In particular, in the case of Rh-C₆₀ the band energies (in eV) along the Γ -M direction have the following dispersion (setting $E_F = 0.0$ and with degeneracies in parenthesis): -0.20(1), 0.00(2), +0.20(1), +1.26(1), +1.35(1). The corresponding dispersion for the square-C₆₀ structure in the Γ -X direction is -0.08(1), 0.02(1) + 0.12(1), +1.30(1) + 2.19(1).
- [25] H. Tasaki, Prog. Theor. Phys. 99, 489 (1998).
- [26] http://xxx.lanl.gov/abs/cond-mat/0207368