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Finite-Size Scaling and Universality of the Thermal Resistivity of Liquid 4He near T�
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We present measurements of the thermal resistivity ��t; P; L� near the superfluid transition of 4He at
saturated vapor pressure and confined in cylindrical geometries with radii L � 0:5 and 1:0 �m [t �
T=T
�P� � 1]. For L � 1:0 �m measurements at six pressures P are presented. At and above T
 the data
are consistent with a universal scaling function F�X� � �L=0�

x=���=�0�, X � �L=0�
1=�t valid for all P

(�0 and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity �, and
 � 0t

�� is the correlation length). Indications of breakdown of scaling and universality are observed
below T
.
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tivity ��t; P; L� � 1=
�t; P; L� near T
�P� of liquid 4He 0
The modern theory of critical phenomena [1] predicts
that continuous phase transitions belong to distinct uni-
versality classes which are determined by such general
properties of the system as the number of degrees of
freedom of the order parameter and the spatial dimen-
sionality. Within a given class, exponents and amplitude
ratios are identical (i.e., universal) for all members and
independent of irrelevant variables. An example of an
irrelevant variable is the pressure P of a liquid helium
sample at which measurements near the superfluid tran-
sition temperature T
 are made. Within a given universal-
ity class, the dependence of many properties upon certain
parameters can be represented by scaling functions which
are the same for all systems. The present Letter is an
experimental study of the scaling function which de-
scribes the effect of confinement in a cylindrical geome-
try with radius L on a transport property near a critical
point [2,3]. For static properties this finite-size scaling
has been studied by a number of precise experiments. For
example, the heat capacity near the superfluid transition
of 4He has been measured for confinement sizes which
vary by a factor of over 1000, and the data to a large
extent can be collapsed upon a unique function when
properly reduced [4–7]. Even for static properties, how-
ever, measurements which test the universality of such a
scaling function are quite limited [8,9]. For transport
properties there are, to our knowledge, no prior experi-
ments which test scaling and universality for finite-size
effects. There has been only one experiment on the effects
of confinement on a transport property [10,11], namely,
the measurements of the thermal conductivity 
 of he-
lium near T
 in cylindrical tubes. These measurements
can be used to derive a scaling function which would be
expected to be universal, but since they were performed
only for the one value L � 1 �m and only at saturated
vapor pressure (SVP), they provided a test of neither
finite-size scaling nor of the universality of the derived
function.

We present experimental results for the thermal resis-
0031-9007=03=90(2)=025301(4)$20.00 
confined in cylinders of two different radii and at various
pressures as a function of the reduced temperature t �
T=T
 � 1. The use of two confinement sizes allows us to
directly test finite-size scaling, while the use of different
pressures for one size provides a test of universality. For
bulk helium ��t; P;1� depends strongly on pressure [12],
so that a comparison of an appropriate scaling function
for ��t; P; L� at different pressures provides a sensitive
test of universality. These two aspects were tested in
separate experiments: measurements as a function of L
were taken at SVP, and measurements as a function of P
were taken at a single confinement size L � 1:0 �m.

Theoretical predictions for 
 are still quite limited.
Monte Carlo calculations give the shape of a scaling
function, but only to within a multiplicative factor [13].
Within its precision this shape agrees well with the mea-
surements of Ref. [10]. Very recently, a one-loop renor-
malization group (RG) calculation of 
�t; P; L� for t � 0
and at SVP was carried out by Töpler and Dohm [14], but
at present there are no such calculations for t < 0 and for
higher pressures. Thus, in order to provide a broader
framework for the analysis of our data, we use a phenom-
enological approach. We assume that the temperature and
size dependence of � are separable and that the size
dependence is a function only of L= where  � 0t

�v

is the correlation length: ��t; P; L� � ��t; P;1�~FF�L=�.
Since ��t; P;1� goes to zero as t does while ��t; P; L�
remains finite, ~FF diverges at t � 0. To avoid this diffi-
culty, we redefine the scaling function as F�X� �
�L=�x=� ~FF, which avoids the divergence at t � 0.
Consistent with experiment [12], we have written � for
bulk helium as a power law ��t; P;1� � �0t

x with effec-
tive exponents x�P� and amplitudes �0�P�. We now have

F�X� �
�

L
0�P�

�
x=�

���t; P; L�=�0�P�	; (1)

with

X �

�
L
�
1=�

t: (2)
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The correlation length has a pressure-dependent ampli-
tude 0�P� and a universal exponent �. The values of 0;
�0, and x are known from bulk measurements [12] and
are summarized in Table I.

We used two different thermal conductivity cell types.
Type I was described in detail elsewhere [10]. It was used
for measurements of the resistivity as a function of P at
L � 1:0 �m. It consisted of two cylindrical metal end
plates made of oxygen-free high-conductivity copper sep-
arated by a stainless steel sidewall. A glass microchannel
plate (MCP) was epoxied to the inside of the sidewall, so
that when assembled the liquid helium between the plates
would be confined to the channels with little extraneous
liquid between the end plates and the glass. A small bulk
thermal conductivity cell, called a ‘‘lambda device,’’ was
attached to the bottom (hot) copper plate for the deter-
mination of T
 in bulk helium. The bottom of the lambda
device was 1.25 cm below that of the confinement cell,
and corrections for the hydrostatic pressure difference
between the bottom of the lambda device and the middle
of the MCP were made [15,16]. The cell was filled
through an overflow volume located on the top (cold)
copper plate.

Cell type II, used for measurements of the resistivity as
a function of L at SVP, was designed for use with micro-
channel plates which were surrounded by a solid glass
ring. Whereas the MCP in cell I was epoxied into a
stainless steel sidewall which in turn was sealed to the
copper end plates with indium gaskets, the glass ring in
the second type was directly sealed to the copper end
plates using indium. The cryogenic apparatus used with
this cell design accommodated three thermal conductiv-
ity cells, all of which were suspended from a common
temperature-regulated platform. One of these cells was a
bulk conductivity cell constructed with a glass ring with-
out microchannels in the central section. It served to
locate T
 of the bulk fluid. The conductivities of the three
cells could be measured simultaneously. The fill lines
entered the bottom of the cells, and the portion of the
fill line located in the bottom end plate was packed with
0:05 �m alumina powder to suppress the superfluid tran-
TABLE I. Values of the parallel conductance CW and scaling
function F at X � 0 versus pressure.

L P 0 10�4�0 104CW

Cell (�m) (bars) (nm) (cmK=W) x (W=K) F�0�

II 0.5 SVP 0.1432 8.312 0.4397 13.3 1.35
II 1 SVP 0.1432 8.312 0.4397 10.5 1.35
I 1 SVP 0.1432 8.312 0.4397 9.35 1.40
I 1 6.95 0.1425 9.073 0.4251 8.81 1.30
I 1 11.25 0.1410 10.19 0.4250 8.41 1.30
I 1 14.73 0.1399 11.10 0.4250 8.07 1.32
I 1 22.31 0.1382 12.79 0.4159 7.44 1.31
I 1 28.00 0.1314 15.07 0.4127 6.80 1.24
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sition. Thus the liquid helium contained in the bottom end
plate was always normal. The fill line was connected to an
overflow volume on the shield stage, which was main-
tained a few mK above T
.

Saturated vapor pressure was maintained in both sets
of experiments by partially filling the overflow volumes.
Pressures other than SVP were reached in cell type I
using a ‘‘hot volume’’ [17], i.e., a separate thermal stage
filled with fluid whose temperature was controlled so as to
regulate the pressure in the thermal conductivity cell. The
pressure was measured using a capacitative strain gauge
[18] mounted on the top of the cell. The fluid in the cell
and the hot volume was isolated from the rest of the
cryostat by a normally closed low-temperature valve.

For cell I, the pressures at which measurements were
made were chosen to match those for which prior mea-
surements for bulk helium were available [12]. For all
cells the resistivity � was computed from the temperature
difference 	T which was measured across the fluid layer
when a power Q was applied to the bottom plate of a cell:
� � �A=d���Q=	T � CW�

�1 � Rb	, where A is the cross-
sectional area of the fluid, d is the spacing between the
plates, CW is the parallel conductance of the stainless
steel sidewall and the glass of the MCP, and Rb is the
boundary resistance between the copper end plates and
the fluid. The boundary resistance Rb was measured far
below T
, where the resistance of the fluid layer can be
neglected. The size of the correction is relatively small,
and its temperature dependence near T
 [19] was ne-
glected. The parameters A=d and CW were obtained by
fitting the measured 
�t; P; L� to the known 
�t; P;1�
several mK above T
 where the effects of confinement
are negligible. The value d=A � 0:386 cm�1 so obtained
was found to be independent of pressure and agreed with
the value 0:39 cm�1 previously determined for this cell
[10]. The 0:5 and 1 �m data, taken with cell II, yielded
d=A � 0:0781 and 0:0605 cm�1, respectively. All values
for d=A are in good agreement with values from gas flow
impedance measurements on and electron micrographs of
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FIG. 1. Thermal resistivity versus reduced temperature at
SVP for L � 0:5 �m (open circles) and 1:0 �m (open squares).
The plusses are bulk measurements (Ref. [12]) and the solid
line is a power-law fit to the bulk data.
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FIG. 2. Scaling function F versus scaling variable X at SVP
for L � 0:5 �m (open circles) and 1:0 �m (open squares).
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FIG. 4. Scaling function F versus scaling variable X for L �
1:0 �m. Pressures and symbols are as in Fig. 3.
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the microchannel plates. The values for CW for each size
and pressure are shown in Table I (for P � 11:25 bars,
there were no bulk conductivity data, and CW was ob-
tained by interpolation between other pressures). Each
conductivity data point was assigned to the mean tem-
perature �TT � Ttop 
 	T=2, and a corresponding curva-
ture correction [12] was applied to correct for the use of a
finite Q and 	T.

The resistivity at SVP is plotted versus t in Fig. 1 for
two different values of L. The data show the effect of
confinement, with the smallest size showing the greatest
rounding of the transition and the greatest increase of
��t � 0�. The scaling variable F�X� [Eq. (1)] is plotted
versus X [Eq. (2)] for the two sizes in Fig. 2. Except for
X & �2, the data collapse onto a single curve, thus
supporting the concept of finite-size scaling. The small
difference in F between the two data sets below X ’ �2
suggests a breakdown of finite-size scaling in the super-
fluid phase.

Figure 3 shows ��t; P; L� as a function of t for six
different values of P and L � 1:0 �m. Whereas the
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FIG. 3. Thermal resistivity versus reduced temperature for
L � 1:0 �m at SVP (open circles); 6.95 bars (solid circles);
11.25 bars (open squares); 14.73 bars (solid squares); 22.31 bars
(open triangles); 28.00 bars (solid triangles). The reduced
temperature for each pressure is defined relative to T
�P�.
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resistivity of the bulk fluid drops to zero at t � 0 [12],
that of the finite system remains finite at t � 0 and
decreases smoothly to very small values as t becomes
more negative. The value of ��t � 0; P; L� varies by
nearly a factor of 3 for the pressures used.

In Fig. 4 F�X� is plotted versus X for six different
pressures. Within the resolution of that figure and the
experimental scatter, the data collapse onto the same
curve, suggesting that a single scaling function describes
all six pressures. The collapse occurs despite the large
variation of � at constant t. The values of F�X� at X � 0
are given in Table I.

The thermal conductivity 
 is plotted on a logarithmic
scale versus t on a linear scale in Fig. 5 for temperatures
below T
�P�. It is consistent with an exponential growth
below T
�P� as noted previously [10]. The amplitudes and
arguments of the exponential are approximately the same
for all pressures. These results suggest that 
, rather than
the scaling function F, becomes independent of pressure
at low temperatures, and that universality breaks down
below T
�P�. To explore this further, we show in Fig. 6 the
scaling function F�X� on a logarithmic scale as a function
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FIG. 5. The thermal conductivity below T
 on a logarithmic
scale versus reduced temperature on a linear scale for L �
1:0 �m. Pressures and symbols are as in Fig. 3.
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FIG. 7. Thermal conductivity 
�t � 0� vs L�1 on logarithmic
scales. The plus is the SVP measurement from cell I. Open
squares are from cell II. The solid straight line is the prediction
based on Eq. (1). The dashed curve is the prediction by Töpler
and Dohm [14].

FIG. 6. The scaling function F below T
 on a logarithmic
scale versus X on a linear scale for L � 1:0 �m. Pressures and
symbols are as in Fig. 3. The inset shows F�X � �4� as a
function of the pressure.
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of X on a linear scale in the range below T
. For X * �2
one sees that the data collapse within their resolution.
However, at more negative X there is a systematic trend of
F�X� with P which exceeds the scatter of the data. This is
seen from the inset in the figure, which gives F at X � �4
as a function of pressure. At X � �4 the results for F�X�
vary from about 0.13 at small P to about 0.07 at high P.

Aside from testing scaling and universality, an impor-
tant issue is to what extent detailed theoretical calcula-
tions can reproduce the conductivity. As discussed above,
the theoretical information is limited. Monte Carlo cal-
culations, which give the shape of the scaling function
quite well, involve as yet undetermined parameters [13].
However, the recent renormalization group calculations
have yielded results for 
 at SVP [14]. In Fig. 7 we show
data for 
�t � 0� as a function of L�1 on logarithmic
scales. The phenomenological scaling function Eq. (1)
predicts 
�t � 0� / L�x=� which, for x=� � 0:656, is
shown by the solid straight line (the amplitude was ad-
justed to fit the data). The RG prediction is given by the
dashed curve. It falls only about 15% below the data, and
in the experimental range of L it has the same effective
exponent (the slope of the curve) as the data and the
scaling prediction. The excellent agreement with the RG
calculation is particularly gratifying since all adjustable
parameters in the theory are taken from properties of the
bulk system and from static finite size properties [14].

Future plans call for the measurement of the resistivity
at larger L, with the largest (50 �m) to be flown on the
International Space Station. Those experiments will ex-
tend the range covered to two decades in L and will
provide a much more severe test of the predictions.
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