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Temporal and Spatial Persistence of Combustion Fronts in Paper
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The spatial and temporal persistence, or first-return distributions are measured for slow-combustion
fronts in paper. The stationary temporal and (perhaps less convincingly) spatial persistence exponents
agree with the predictions based on the front dynamics, which asymptotically belongs to the Kardar-
Parisi-Zhang universality class. The stationary short-range and the transient behavior of the fronts are
non-Markovian, and the observed persistence properties thus do not agree with the predictions based on
Markovian theory. This deviation is a consequence of additional time and length scales, related to the
crossovers to the asymptotic coarse-grained behavior.
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strength of the nonlinearity, and � � ��x; t� is Gaussian
white noise. We have also shown [9,10] that at short scales

defining two persistence exponents. The numerical results
[15] follow the general conjecture that for the stationary
Nonequilibrium systems present a wide range of ques-
tions. One can try to define necessary conditions for the
existence of a stationary state and then proceed to a
characterization of that state. If the dynamics is of an
inherently transient character, more complicated scenar-
ios arise. Unlike in the stationary state, in which the
behavior of the order parameter is described by some
probability distribution, one encounters concepts such as
aging and coarsening which reflect the correlations [1].

A particularly concise and topical approach in non-
equilibrium dynamics is persistence, often defined as
the probability P�t� that, at a point in space, a fluctuating
nonequilibrium field (such as a diffusion field) does not
change sign up to time t [2,3]. This probability may decay
algebraically, P�t� � t��, with a persistence exponent �.
In some cases � may be unrelated to any of the other
exponents that characterize the system, in particular,
those describing the critical decay of the temporal and
spatial correlation functions. Of special interest in this
respect are non-Markovian random processes, for the
extra challenges they present.

Because of the statistical nature of the problem, clear
experimental demonstrations of persistence are still quite
rare [4–7]. In the present Letter, we consider persistence
as observed in the experiments on the propagation of
slow-combustion fronts in paper sheets. We have earlier
[8–10] shown that at long spatial and temporal scales the
dynamics of these fronts follows the universality class
of the (1� 1)-dimensional Kardar-Parisi-Zhang (KPZ)
equation [11,12]
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where h � h�x; t� is the height of the interface at point x
and time t, � is the surface tension parameter, � is the
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the short-range correlations in the effective noise prevent
the system from displaying true scaling behavior.

We consider here the first-return properties of the ex-
perimentally observed fronts, h�x; t�, in spatial and tem-
poral domains, at both stationary and transient stages,
and compare them with various theoretical predictions.
For short time and length scales, the correlations in the
noise in our experiments are relevant, and the dynamics is
non-Markovian. We study the implications of this on
persistence.

A complete description of our experimental setup is
given in Ref. [10]. We have chosen to analyze data for the
80 gm�2 copier paper as a typical case, and also since it
presents the best statistics. In Fig. 1 we show the height-
fluctuation field observed in a typical sample ‘‘burn.’’

In the absence of nonlinearity (� � 0), the long-range
dynamics would be described by a linear diffusion equa-
tion with thermal noise, the Edwards-Wilkinson (EW)
equation. This case was analyzed in the temporal domain
by Krug et al. in the context of linear growth equations
[13] and by Bray and Majumdar in terms of the spatial
return characteristics [14]. In the stationary state one
finds �s � 1=2, which for these linear equations is the
same as for the transient behavior.

For � � 0 the stochastic process, the KPZ height fluc-
tuations, is non-Gaussian, and the stationary and transient
temporal persistences are theoretically difficult to ana-
lyze. Kallabis and Krug observed, starting from a nu-
merical growth model, that the persistence behavior can
be characterized by considering the scaling functions of
the general persistence probability P�t0; t�, where t is
measured beginning from time t0 after the start of the
kinetics from a flat initial profile [15]. This has two limit-
ing behaviors, the transient behavior for t0 before satura-
tion and the stationary-state behavior for t0 after it, thus
2003 The American Physical Society 024501-1
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FIG. 1. An example of a combustion experiment. In the
height-fluctuation field the black color indicates fluctuations
in the positive and white in the negative direction. The cross-
over scales �c and ‘c, see Figs. 2(b) and 3(b), are marked
by bars.
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state

�s � 1� ; (2)

where  describes the temporal two-point correlation
function of the interface fluctuations (to be defined be-
low), which can be justified by the self-affine nature of
the process. For the transient regime, Kallabis and Krug
observed, e.g., that persistence depends on the up-down
asymmetry of the dynamics, in their model with values
1.2 and 1.6 for the transient temporal persistence expo-
nents for fluctuations in the up and down directions,
respectively [15]. In the stationary state the asymmetry
was reflected only as different normalizations of the
persistence probability for fluctuations in the up and
down directions.

One may likewise consider any particular front at a
fixed time t and look at the interface profile as a stochastic
process as discussed by Bray and Majumdar [14], who
studied first-passage properties in space. In analogy with
the temporal case, the probability that the interface stays
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above or below a given reference level may have a power-
law decay. Moreover, depending on whether the configu-
ration represents the stationary state or whether it has
essentially finite fluctuations, one again has two different
exponents. In terms of the interface morphology, they can
be related to the roughness exponent � (see below).

To characterize persistence, we consider ftemp
� ���, the

first-return distributions, i.e., the distributions of return
time �, defined as the time a variable stays above ( � ) or
below ( � ) a given reference level. The persistence ex-
ponents �temp

� and �spat� describe the decay of the related
temporal and spatial persistence probabilities, respec-
tively, and are defined via [13,14]

Ptemp
� ��� � ���temp

� and Pspat
� �‘� � ‘��spat� ; (3)

where � and ‘ denote the persistent time- and length
scales. In the transient regime these quantities are com-
puted by sampling within a suitably chosen time window
(see below), and denoted by a tilde, e.g., ~��temp

� .
Since a combustion front propagates with a finite aver-

age velocity v, we look at the fluctuations �h�x; t�, at a
fixed point x � x0 and time t, in the front h�x; t� around its
average height,

�h�x; t� 	 h�x; t� � h�t�: (4)

Here the overbar denotes a spatial average at time t. For
practical purposes we define the return times as follows:
�� is the length of the time interval between t1 and t2 such
that �h�x0; t1� � 0 � �h�x0; t2�, and �h�x0; t� > 0 for all
t 2 �t1; t2�. The return time �� is defined analogously for
�h�x0; t�< 0. For discrete sampling times we determine
the crossing times by using linear interpolation.

The temporal persistence probabilities [13] are related
to the corresponding first-return distribution via

Ptemp
� ��� 	 P���  �� � 1�

Z �

�1
ftemp
� ��0� d�0: (5)

As explained in Ref. [16], in discrete time (and also in
discrete space) sampling, one misses very short excur-
sions, and correct normalization of Ptemp

� and Pspat
� is

difficult. Therefore, we prefer to use the distributions
ftemp
� and fspat� , instead of their integrals, for the determi-

nation of the persistence exponents. In the limit of long
time and length scales (� and ‘), the problems in these
functions due to discrete sampling should disappear.

The corresponding spatial quantities [14] at fixed times
are defined analogously. Pspat

� �‘� is the probability that the
front stays above ( � ) or below ( � ) the reference level
over a distance ‘, and fspat� �‘� denotes the corresponding
return-length distribution.

The conjecture of Eq. (2) for the temporal persistence,
and the arguments of Bray and Majumdar, make it nec-
essary to outline the behavior of the two-point correlation
functions. These, and the associated critical exponents are
defined in the usual way as [12]
024501-2
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Ctemp��� � hj�h�x; t� � �h�x; t� ��ji � �; (6)

Cspat�‘� � hj�h�x; t� � �h�x� ‘; t�ji � ‘�; (7)

in which the overbar denotes spatial and the brackets
disorder averaging [17]. In our earlier works, the long-
range scaling of the correlation functions was shown to
be described by the KPZ asymptotics with � ’ 1=2 and
 ’ 1=3 [8–10].

In Fig. 2 we show our experimental results for temporal
persistence in the stationary state. Above a crossover scale
�c of the order of 10 sec (corresponding to fronts that have
propagated, on the average, by about 45 mm, see Fig. 1
again), this figure indicates agreement with the theoreti-
cal expectation, �temp

� � 1� . The dashed line in
Fig. 2(a) follows Eq. (2). Below �c the data in Fig. 2(a)
show no real scaling regime, in analogy to the curvature
visible in Ctemp

� ��� shown Fig. 2(b). We find no difference
between the first-return distributions in the positive and
negative directions since our distributions are separately
normalized to one, so the anisotropy does not appear in
the plots.

The measured first-return distributions for spatial per-
sistence in the stationary state are shown in Fig. 3. Now
the asymptotic behavior is roughly consistent with �spat� �
1� �. The rather long crossover regions [10] in the
correlation functions C��� and C�‘� in Figs. 2(b) and
3(b), which precede the long-range regimes, are directly
visible in the persistence data as well. The crossover is
here located at about 10 mm, which is less than the scale
�c=v would indicate.

The expected persistence behavior takes place only on
long enough scales, where the physics is coarse grained
so as to obey the KPZ equation. There are correlations in
the effective noise (local height increments), with decay
scales of a few seconds and a few millimeters [9]. In the
short-range regime of the stationary-state data, the spa-
tial and temporal statistics are quite far from the scaling
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FIG. 2. The stationary temporal (a) first-return distributions
ftemp
� ��� and ftemp

� ��� denoted by crosses and dots, respectively,
and (b) correlation function Ctemp���. In all figures, the distri-
butions are normalized to unity and the horizontal axis is
logarithmically binned. The dashed and the dotted lines cor-
respond to the asymptotic KPZ and apparent short-range values
[10] of , in (a) via the conjecture f��� � ���2�� from Eq. (2).
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conjecture ‘‘� � 1� .’’ This agrees with the fact that
the dynamics becomes Markovian only asymptotically.
The short-range persistence does not result from an
effectively stationary process that would differ from
the long-range dynamics only by the fact that the two-
point exponents are not defined. The deviation is greatest
in the case of the temporal behavior, for which persis-
tence decays slower than expected from the correlation
function.

The first-return distributions for the transient-time
regime of the dynamics are shown in Fig. 4 for a time
window from the beginning of the burn to just below the
saturation time. In the temporal case the simulation result
for the model of Ref. [15] was ~��temp

� � 1:2; :::; 1:6 . In our
temporal transient distribution shown in Fig. 4(a), the
asymptotics beyond the crossover from short-range be-
havior shows a steeper decay than in the saturated dis-
tribution, but the length of this asymptotic part is so short
that definitive conclusions cannot be made. It may as well
be related to some kind of cutoff behavior. No indications
of an up-down anisotropy can be seen. In the spatial
transient distribution the asymptotics is better defined,
and it is interesting to notice that it is given by ‘��2���

with � � 1=2 as in the saturated regime [see Fig. 4(b)].
The main features of the observed transient persisten-

ces can be summarized in two findings: First, in our data
the spatial long-range scaling is reminiscent of the sta-
tionary state. Second, there is no simple short-range
behavior below the crossover scales. In some cases the
short-range scalings resemble power-law ones, albeit over
rather short ranges, but the effective persistence expo-
nents are never in agreement with those related to the
decay of correlations.

In principle, for a time window above the crossover
time �c but below the saturation time some ‘‘expected’’
(KPZ) temporal transient behavior could be observed.
However, the typically wide [10] crossover region around
�c would interfere with it, unless the saturation time could
be made long enough by, e.g., considerably increasing the
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FIG. 3. The stationary spatial (a) first-return distributions
fspat� �‘� denoted by crosses and dots, respectively, and (b)
correlation function Cspat�‘�. The dashed and the dotted lines
correspond to the asymptotic KPZ and apparent short-range
values [10] of �, in (a) via the conjecture f�‘� � ‘��2��� from
Eq. (2).
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FIG. 4. Transient regime (a) temporal first-return distribu-
tions ~ff temp

� ��� and (b) spatial first-return distributions ~ffspat
� �‘�.

In both cases crosses denote excursions to positive and dots to
negative direction. By the full curves we show the averages
(over � directions) of the stationary distributions ftemp

� and
fspat� of Figs. 2 and 3, respectively.
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system size. Recall that the origin of the temporal tran-
sient exponents in KPZ-type dynamics, as seen in
Ref. [15], is the asymmetric interface (valleys and hill-
tops). In our case, these features can be visible only for
� > �c and ‘ > ‘c [10].

To summarize, we have studied the persistence
properties of fluctuating combustion fronts in paper.
Asymptotically both temporal and spatial persistence
follow the theoretical expectations for the stationary
case. For the short-range behaviors the KPZ physics is
irrelevant, and the first-return distributions deviate from
those based on a stationary Markovian stochastic process
[18]. Instead, the physics indicates the presence of mem-
ory effects. Our results have theoretical implications also
for problems, where the KPZ scaling is seen only asymp-
totically [19].
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