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Stretching Instability of Helical Springs
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We show that when a gradually increasing tensile force is applied to the ends of a helical spring with
sufficiently large ratios of radius to pitch and twist to bending rigidity, the end-to-end distance
undergoes a sequence of discontinuous stretching transitions. Subsequent decrease of the force leads
to steplike contraction, and hysteresis is observed. For finite helices, the number of these transitions
increases with the number of helical turns but only one stretching and one contraction instability
survive in the limit of an infinite helix. We calculate the critical line that separates the region of
parameters in which the deformation is continuous from that in which stretching instabilities occur.
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principle, arc-length dependent) curvature �, torsion �,
and the angle � between one of the principal axes of the FIG. 1. A typical helix, with the pitch and radius indicated.
The mechanical instability of systems under external
forces is an important phenomenon, the study of which
dates back to the solution of the buckling of a thin elastic
beam under compression and torque by Euler and his
contemporaries [1,2]. The geometry of the system clearly
plays an important role in this process. The present paper
presents a theoretical prediction of a hitherto unknown
instability that arises when a helical spring is stretched by
a tensile force applied to its ends. This instability is
especially interesting as a result of the current experi-
mental interest in the elastic properties of microscopic
objects, ranging from self-assembled helical ribbons in
solidifying cholesterol [3] to chromatin [4] to DNA [5].
As we will show in the following, stretching instabilities
occur only in helices whose radius is sufficiently larger
than their pitch and whose rigidity with respect to twist
exceeds that with respect to bending.

Consider a helical spring of contour length L, charac-
terized by its radius r and pitch p (see Fig. 1). For our
purposes, it is more convenient to describe the helix in
terms of its intrinsic geometrical quantities, the curvature
�, and torsion �:

� �
r

r2 � � p2��
2 ; � �

p
2�

r2 � � p2��
2 : (1)

Under the action of a constant stretching force F applied
to its ends and directed along the z axis (the ends are
otherwise unconstrained and no torque is applied), the
helix deforms into a curve whose shape is determined by
minimizing the elastic energy [6–9]
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1
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X3
i�1

ai
Z L

0
ds��!i�s��2 � FRz; (2)

with respect to the deviations �!i�s� of the generalized
curvatures and torsions !i�s� from their spontaneous
values in the undeformed state (s is the contour parame-
ter). In general, these quantities are related to the (in
0031-9007=03=90(2)=024301(4)$20.00 
cross section (t1) and the binormal: !1 � � cos�, !2 �
� sin�, and !3 � �� d�=ds. We study here the case that
the only contribution to spontaneous twist comes from
torsion (�0 � 0) and therefore !01 � �0, !02 � 0, and
!03 � �0, where the subscript 0 refers to the quantities in
the undeformed state, a helix characterized as in Eq. (1).
The coefficients a1 and a2 are bending rigidities associ-
ated with the principal axes of inertia of the (in general,
noncircular) cross section, and a3 is the twist rigidity. In
the following we treat ai as given material parameters of
the spring. The shape of the deformed spring can be
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obtained by inserting the f!i�s�g that minimize the elas-
tic energy into the generalized Frenet equations for the
unit vectors ti (t3 is the tangent to the curve at point s and
t1 and t2 point along the principal axes of symmetry of
the cross section):

dti=ds � �
X
jk

eijk!jtk; (3)

where eijk is the antisymmetric unit tensor [10]. The space
curve r�s� associated with the centerline of the deformed
spring is then obtained by integrating the relation
dr=ds � t3. The system of equations is closed by substi-
tuting the expression for the projection of the end-to-end
vector on the z axis, Rz �

R
L
0 dst3�s� 
 z, into Eq. (2).

Since the spring will always orient itself along the direc-
tion of the force, in the following we replace Rz by the
end-to-end distance R.

The force-extension curves are calculated numerically
for a helix of four turns by finding a set of !i�sj� (the
continuous curve is replaced by a discrete set of points,
fsjg, j � 1; 2; :::), that minimizes the energy, Eq. (2). Two
typical types of behavior are found. For sufficiently large
ratio of pitch to radius p=r � 2��0=�0 and sufficiently
small ratio of twist to bending rigidity a3=ab [where
a�1
b � �a�1

1 � a�1
2 �=2], the deformation is continuous

and identical curves are obtained by stretching the un-
deformed helix and by starting from a fully stretched
configuration and decreasing the tensile force to zero
(Fig. 2).

In the opposite limit (sufficiently large r=p and a3=ab
ratios), increasing F results in a sequence of discontinu-
ous upward jumps of the end-to-end distance (Fig. 3),
whose number depends on the number of helical turns and
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FIG. 2. Continuous deformation of a helix of four turns with
�0 � 1, �0 � 0:2, a1 � 1, a2 � 5, a3 � 3, showing absence of
hysteresis. We show the end-to-end distance as a function of the
force for both increasing (circles) and decreasing (solid line)
force.
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on the increment of the force. Comparison of the con-
formations on both sides of a discontinuity shows that the
jumps are associated with the elimination of helical turns
(Fig. 3, insets). Discontinuous downward jumps of the
end-to-end distance are also observed when one starts
from a fully stretched configuration and gradually de-
creases the tensile force, but the locations of these jumps
are, in general, different from those of the upward ones.
The observation of hysteresis loops of stretching and
contraction implies that the elastic energy E�R� has mul-
tiple local minima whose depth and location vary with
the tensile force F. In the absence of thermal fluctuations,
and with infinitesimal force increments, a transition to a
new energy minimum (not necessarily the lowest energy
one) takes place when the minimum corresponding to the
original state disappears. In practice, the size of the
hysteresis loop is a function of the size of the force
increments chosen.

There exists a critical surface in the parameter space
that separates between regions in which the deformation
is continuous from those in which a discontinuous stretch-
ing transition takes place. It is of particular interest to
locate this critical surface in the limit of an infinitely long
helix, for which end effects are negligible and it is ex-
pected that the only stable states are perturbations of
the original undeformed helix and of the completely
stretched spring (and therefore only one hysteresis loop
that corresponds to a single stretching and a single con-
traction instabilities is expected). Insight into this limit
can be achieved via analytical approximations. In order to
reduce the number of variables, we consider a ribbon with
highly asymmetric cross section, a2=a1 ! 1, in which
case the cross section of the ribbon is pinned to the Frenet
frame of its centerline, ��s� � 0, and the deformed spring
is completely characterized by � and �. Based on our
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FIG. 3. Hysteresis loop for a helix of four turns, now with
a3 � 4. The other parameters are as in Fig. 2. We again show
the end-to-end distance as a function of the force for both
increasing and decreasing force.
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numerical studies of short helices, we stress that varying
a2 (while keeping all other parameters fixed) affects the
detailed extension versus force curves but does not change
the character of the transitions, and stretching instabili-
ties accompanied by hysteresis are observed even in the
symmetric case, a1 � a2.

In the following we measure the energy in units of
a1�

2
0L, and force in units of a1�

2
0. In order to obtain

analytical results, we consider the limit of an infinitely
long helix and assume that the spring maintains a helical
shape and responds to deformation only by adjusting its
curvature and torsion parameters. Thus, we look for con-
stant (s-independent) parameters � and � that minimize
the energy per unit length,

E=L �
1

2
��=�0 � 1�2 �

a3=a1
2

��=�0 � �0=�0�
2

�
F�=�0���������������������������������������

��=�0�
2 � ��=�0�

2
p : (4)

Support for this variational approximation comes from
numerical minimization of the energy, Eq. (2), which
shows that while the curvature and torsion oscillate about
their mean values, the amplitude of oscillation decreases
with the length of the spring. In Fig. 4 we compare the
extension vs force curve for a helix of 12 turns, obtained
by exact numerical minimization of Eq. (2), with that
obtained using the variational estimate. The fact that the
two curves coincide up to the stability limits of the initial
and the final states provides further support for the va-
lidity of our variational approach. Beyond these limits,
the deformed object is not close to a pure helix, and our
simple estimates are inappropriate.

Analytical results can be obtained in several limiting
cases. In the case of large twist rigidity, a3=a1 ! 1, the
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FIG. 4. Hysteresis loop for a helix of 12 turns, with �0 � 1,
�0 � 0:2, a1 � 1, a2 � a3 � 1. We show the end-to-end dis-
tance as a function of the force for both increasing (dashed
line) and decreasing (dotted line) force. Also shown is the
result of our simple model with constant � (solid line).

024301-3
torsion is pinned to its spontaneous value (� � �0) and the
curvature obeys the relation a1��=�0 � 1� � F��0=�0� 
��=�0����=�0�

2 � ��=�0�
2��3=2 � 0. Graphical analysis

of this equation shows that it admits either a single
minimum or two minima separated by a maximum. For
�0 > �0;c there is a single minimum of � as a function of
F. For �0 < �0;c, there is a window of F between which
there are three solutions and outside which there is only
one solution. This window closes at the critical point:
�0;c=�0 � �2=3�5=3 � 0:363, Fc � 0:651, and �c=�0 �
0:444. Another limit in which the critical point can be
calculated analytically for arbitrary a3=a1 is �0=�0 � 1.
In this case we find that two minima exist for a3=a1 >
4=3. The critical value of this ratio is therefore 4=3 and at
this point Fc � 4=3, and �c=�0 ’ 541=5��0=�0�

2=5=2. In
between these two limits the critical points have to be
found numerically, resulting in a critical line in the
a3=a1 � �0=�0 plane (Fig. 5). These analytic results are
consistent overall with the general features seen in our
numerical solutions for finite length helices. One striking
difference is in the number of metastable states. The finite
helix has many such metastable states, whereas the infi-
nite helix has only two, the stretched and the unstretched.
From the numerics it appears that as the number of turns
increases, the number of states goes up, and the depth of
the corresponding wells shrinks so as to leave only
two metastable states in the limit of an infinite number
of turns.

We have shown that there exists a range of spontaneous
curvatures and torsions as well as bending and twist
rigidities in which a helical spring does not deform con-
tinuously with the tensile force. Instead, as the force is
increased, the spring undergoes a sequence of stretching
instabilities. Hysteresis is predicted to take place when
the force is decreased starting from full extension, as
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FIG. 5. Critical line in the a3=a1 � �0=�0 plane for an infi-
nitely long helix with a2=a1 ! 1. The vertical and horizontal
dotted lines correspond to the two limits discussed in the text,
�0;c=�0 � 0:363 and a3=a1 � 1:333, respectively.
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both the number of sudden contractions and their loca-
tions differ from that of the stretching instabilities at
increasing force. We presented a variational calculation
of the critical line that separates the region of parameters
in which the deformation varies continuously with the
force from that in which stretching instabilities take
place. Even though the analysis was restricted to the limit
of an infinitely long spring with a highly asymmetric
cross section, our numerical results indicate that stretch-
ing instabilities will be observed in helical springs with
both the radius to pitch ratio and the ratio of twist rigidity
to bending rigidity larger than some numbers of order
unity. While the former requirement can be realized by
preparing a spring of a desired shape, the latter condition
may require the use of materials with special elastic
properties. Notice that for isotropic materials the rigidi-
ties can be expressed in terms of the shear and Young
moduli � and E and the geometry of the cross section; for
example, in the case of a rectangular cross section with
sides c1 and c2 one has [11] a1 � Ec1c

3
2=12, a2 �

Ec31c2=12, and a3 ’ �c1c
3
2=3 (the last expression holds

in the limit c1 � c2). For incompressible materials this
yields a3=a1 ’ 4=3 which coincides with the critical
value of the ratio. The ratio a3=a1 can be increased
beyond this critical value by reducing the Poisson ratio
or by using anisotropic materials with high resistance
to twist.

We close with some final comments about the general-
ity and applicability of our findings. First, we point out
that insofar as our instability is critically dependent of
the geometry of the helix (namely, the pitch=radius ratio),
it has no obvious relation to the Euler buckling instability
of beams. However, like the Euler instability, the insta-
bility discussed here is a result of the simplest theory of
continuum elasticity of slender rods, and should be
present independent of any fine details of the underlying
microscopic structure. The geometry dependence of the
effect is noteworthy; it exists only for low-pitch helices,
and not for rodlike ones. In fact, the limit of a straight rod
is trivial in our model as it is inextensible — the ‘‘stretchi-
ness’’ of the helix is a consequence of its low pitch.

Finally, we stress that since the present analysis is
purely mechanical [12], the results are directly applicable
only to macroscopic objects. The relevance of the present
work to the deformation of nano-objects such as biopoly-
mers (DNA, proteins), protein filaments (actin, micro-
tubules, etc.), and carbon nanotubes depends on the
question of whether these objects possess spontaneous
curvature and torsion, and on the values of the bending
rigidities. It is interesting to note that in elastic models of
024301-4
DNA [13] a3 is commonly assumed to exceed a1, as is
required for our effect. A stretching instability has in fact
been recently observed in self-assembled helical ribbons
of cholesterol [3]. Whether this observation is related to
our theory remains to be explored. Furthermore, both
hysteresis and a sequence of stretching instabilities were
reported for chromatin (a zigzag of nucleosomes con-
nected by linker DNA) [4]. Discontinuous stretching
transitions were also reported in single molecule exten-
sion studies of torsionally constrained DNA at high de-
gree of supercoiling(unlike our model, supercoiling was
not spontaneous but was achieved by the application of
torque) [5]. The study of stretching instabilities of such
objects requires consideration of thermal fluctuations and
extension of the present analysis using the methods of
references [9,10,14,15], which we hope to report on soon.
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