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Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays
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We report the first experimental observation of discrete solitons in an array of optically induced
waveguides. The waveguide lattice is induced in real time by illuminating a photorefractive crystal with
a pair of interfering plane waves. We demonstrate two types of bright discrete solitons: in-phase self-
localized states and the staggered (7 out-of-phase) soliton family. This experiment is the first
observation of bright staggered solitons in any physical system. Our scheme paves the way for
reconfigurable focusing and defocusing photonic lattices where low-power (mW) discrete solitons

can be thoroughly investigated.
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Periodic nonlinear systems are ubiquitous in nature
and are known to exhibit behavior that differs fundamen-
tally from that of their homogeneous counterparts. In
these periodic nonlinear lattices, the underlying dynam-
ics are dominated by the interplay between linear cou-
pling effects among adjacent potential wells and
nonlinearity. Indeed, a balance between these two pro-
cesses can result in a self-localized state, which can be
either a time-periodic breather or a steady-state lattice
soliton. Very often, such systems can be represented as a
discrete array of coupled nonlinear sites, in which case
the associated self-localized states are better known as
discrete solitons (DS) [1-4]. Examples occur in abun-
dance, in all branches of science, such as biology [1],
nonlinear optics [2], solid-state physics [3], and Bose-
Einstein condensates [4]. In the past few years, much
progress has been made in attempting to observe discrete
solitons in various physical systems. In biological
a-helices, time-dependent breather states have been in-
ferred from pump-probe experiments [5]. In (linear) ar-
rays of current-driven Josephson junctions, localized
time-periodic rotobreathers (quantum vortex pairs exhib-
iting counterrotating phases) have been observed [6]. In
antiferromagnets, spectral data from resonance experi-
ments have indicated DS states for spin waves [7]. In
transition metals, evidence of localization for vibrational
states has been reported [8]. However, in all of these
systems, direct observations of steady-state discrete soli-
tons (not breathers) remain elusive. In fact, direct obser-
vations of DS have been reported only in a 1D array of
nonlinear waveguides [9,10], but even that only for self-
focusing nonlinearities that restrict the allowed class of
soliton solutions. In all of the above, the experiments
require specialized materials with fixed geometries that
limit their potential application. Here, we demonstrate a
new method of creating lattices in photosensitive mate-
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rials using optical induction and form discrete solitons in
the resulting waveguide systems.

Optical waveguide arrays provide a fertile ground for
investigating self-localized states in nonlinear periodic
systems. In waveguide lattices, wave propagation is asso-
ciated with a Brillouin zone that significantly alters the
collective diffraction behavior. For example, when light
propagation is linear, an on-axis beam focused into one
waveguide will spread to its neighbors (via discrete dif-
fraction, or tunneling), with the intensity mainly concen-
trated in the outer lobes [2,9—13]. When the probe beam is
injected at an angle 6 = k,/k = k/k, with respect to the
array, the corresponding ‘“Bloch momentum” k, may
satisfy Bragg reflection conditions with the lattice wave
vectors. For increasing input angles within the Brillouin
zone (defined in the range |k, D| = 7, where D is the
lattice spacing) excitations in adjacent waveguides will
become more out of phase with each other, up to a
maximum 7 phase difference at the zone edge. This
region corresponds to a regime of anomalous (‘“‘nega-
tive”’) diffraction, allowing for such interesting effects
as diffraction management [12]. For nonlinear waveguide
arrays with a sufficiently large nonlinearity, a balance
between discrete diffraction and nonlinear self-focusing
can occur. The resulting discrete self-localized modes or
discrete solitons can be located either at the base of the
Brillouin zone, forming in-phase solitons [2], or at the
edge of the Brillouin zone, leading to staggered solitons
[13]. We emphasize that such nonlinear periodic systems
exhibit soliton solutions that have no counterparts in
homogenous media. These include, for example, dark
and bright staggered (7 out-of-phase) soliton families
[13] that reside at the edge of the Brillouin zone, in
self-focusing and defocusing materials, respectively. All
experiments carried out so far were in fabricated 1D
waveguide arrays with self-focusing nonlinearity, which
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can allow only the observation of certain families of DS
(in-phase bright [9] and staggered dark [10]). Further-
more, creating a 2D waveguide array in the bulk through
conventional fabrication techniques poses major techno-
logical challenges.

In a recent work [14], we predicted that 1D and 2D
optical discrete solitons are possible in biased photore-
fractive crystals. In that proposition, the photorefractive
nonlinearity is utilized to optically induce in real-time
waveguide arrays (in either 1D or 2D in the bulk) by
interfering pairs of plane waves, and the solitons form
when the screening nonlinearity [15] is employed. An
advantage of using a dynamic medium such as a biased
photorefractive crystal over, say, an array of microfabri-
cated optical fibers is threefold. First, the configuration is
dynamically adjustable, allowing real-time control of
lattice spacing and potential well depth. Second, the
material has a strong nonlinear response, allowing soli-
ton formation at very low intensities (mW). And last but
not least, the strength and sign of the nonlinearity can be
tuned by simply adjusting the magnitude and polarity of
the applied field.

In establishing the optically induced waveguide arrays
in biased photorefractives, it is essential that the beams
writing the waveguide lattice remain invariant during
propagation. Such diffraction-free periodic patterns
can be synthesized easily by appropriately interfering
plane-wave pairs under linear conditions [14]. The “sig-
nal” soliton-forming beam, on the other hand, must ex-
perience the highest possible nonlinearity. To achieve
these two, seemingly conflicting, objectives, we chose a
photorefractive crystal with a strong electro-optic anisot-
ropy with the interfering waves polarized in a non-
electro-optic direction, whereas at the same time the
signal beam was polarized in the crystalline orientation
that yields the highest possible nonlinearity. In a 1D
arrangement, the z evolution of both the lattice waves
(V) (periodic along x) and the (soliton-forming) probe
(U) can be described by [14]
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where k; = kyn,, k, = kgn,, the subscripts e and o refer
to the extraordinary and ordinary polarizations, An is the
nonlinear index change, and I = |U|?> + |V|? is the total
intensity of the two orthogonally polarized fields. It is the
strong anisotropy of the system that allows the coupled
fields to have such markedly different behavior. The peri-
odic structure of the system is implicitly contained in the
potential induced by |V(x)|>. In this configuration, the
writing wave V evolves almost linearly as An, > An,.
As a result the system of Eqgs. (1) and (2) effectively
reduces to a single nonlinear partial differential equation
for U propagating in the periodic potential induced by V.
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For example, the 1D field V = V,, cos(mx/D) (as obtained
from the coherent superposition of two plane waves at an
angle) propagates invariantly along z while providing a
periodic potential (with spatial period D) for the probe
field U. In this scenario, the probe (soliton) beam expe-
riences the familiar competition between nonlinearity
and nearest-neighbor coupling. Indeed, under suitable
conditions, this reduced system of equations can be fur-
ther simplified [14] into a discrete nonlinear Schrodinger
equation, which constitutes the basic model for such
phenomena. We emphasize, though, that the nonlinear
discretelike behavior of the probe field U arises from a
continuous periodic potential. This represents a much
more accurate description of many such nonlinear phe-
nomena in periodic lattices (e.g., those occurring in
standing-wave traps for atoms in Bose-Einstein conden-
sates) and by itself can have a significant impact on the
underlying dynamics of the system. For example, high
momentum excitations within the Brillouin zone can lead
to radiation modes in higher bands and subsequently to
transport anomalies that are not accounted for by a dis-
crete model (or the tight-binding approximation) [14].

In our case where a photorefractive crystal is employed,
the nonlinear index changes are given by An, =
k0n3r33ESC/2 and Ano = k0n2r13ESC/2 where rl-j is the
appropriate coefficient of the electro-optic tensor and
the space charge field E . is given by [15]

Ey,  KgT ol/ox
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Here I = I/I4,, where I = |U|?> + |V|? and I, is the
dark irradiance of the crystal, E; is the applied bias field,
Kp is Boltzmann’s constant, T is the temperature, and e
the electron charge. The first term in Eq. (3) depends on
the applied field E, and represents the dominant screen-
ing nonlinearity [15]. On the other hand, the second term
accounts for the much weaker diffusion field; its contri-
bution is important only at very low applied fields and in
nodal regions of the lattice.

In our experiments (Fig. 1), we use a 6 mm long SBN:75
crystal with r33 = 1340 pm/V and r|; = 67 pm/V. The
1D array is created by interfering ordinarily polarized
plane waves of wavelength A = 488 nm through a Mach-
Zehnder configuration. The signal beam is extraordinarily
polarized and is coupled into a single waveguide of the
periodic array. Voltage applied against the c axis sets the
photorefractive screening nonlinearity, which increases
(with an intensity dependence) the index contrast, creates
the waveguide array, and also leads to localization of the
signal beam.

Figures 2-5 show results from our experiments.
Figure 2 depicts the transition of the signal beam from
discrete diffraction to a discrete soliton for on-axis input
as a function of self-focusing nonlinearity (or applied
field). The array has a waveguide spacing of 8.8 um, and
the ratio between the peak intensity of the interference
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FIG. 1. Experimental setup. Light from a 488 nm laser gets
split by a polarizing beam splitter. The ordinarily polarized
wave passes through a Mach-Zehnder configuration (A) to cre-
ate an interference grating on an SBN:75 crystal. The extra-
ordinarily polarized beam is focused into a single waveguide
of the array (B). Before focusing, part of the signal is passed
through another Mach-Zehnder arm (C) to interfere with the
signal output, allowing phase retrieval through interference.

pattern inducing the array and the peak intensity of the
signal beam is 5:1. When the nonlinearity is small, the
signal beam experiences discrete diffraction. When
the signal beam initially excites a single waveguide,
two intensity lobes (separated by three waveguides) ap-
pear at the output [Figs. 2(a) and 2(b)]. On the other hand,
in the strongly nonlinear regime, a highly localized dis-
crete soliton state is formed [Figs. 2(e) and 2(f)] at an
applied voltage of 1000 V. Note that in this case, the
intensity peaks of these in-phase states reside on the
intensity maxima of the writing beam.

Figure 3 depicts the contrast between linear propaga-
tion via tunneling and the nonlinear effect of self-

E

FIG. 2. Signal beam output intensity as a function of increas-
ing focusing nonlinearity (positive voltage) for an on-axis
beam coupled into a single waveguide in an array with
8.8 um channel spacing. (A),(B) show discrete diffraction,
(C),(D) show intermediate self-focusing, and (E),(F) depict
an on-axis (in-phase) discrete soliton.
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FIG. 3. Effect of nonlinearity on soliton formation in an
array of 7.8 wm channel spacing. When the intensity of the
grating beams to the probe beam is 10:1, a discrete soliton is
formed (A),(B). When the probe intensity is reduced to an
intensity ratio of 80:1, self-focusing is too weak to overcome
tunneling, and discrete diffraction results (C),(D).

focusing. Here the probe is input into a single waveguide
of a D = 7.8 um array, and the ratio between the peak
intensity of the interference and the peak intensity of the
signal beam is 10:1. At high voltages (800 V), an on-axis
(in-phase) discrete soliton forms [Figs. 3(a) and 3(b)].
When the signal intensity is lowered by a factor of 8, at
the same voltage, the self-focusing is weakened and a
discrete diffraction pattern results [Figs. 3(c) and 3(d)]. In
other words, Fig. 3 proves that the self-trapping process
responds to the signal intensity in a nonlinear fashion,
and thus what is observed is, in fact, a discrete soliton.
Figure 4 shows discrete soliton formation when the
signal beam is incident at an angle of 0.57° with respect
to the crystal, with its Bloch momentum being very close
to the edge of the Brillouin zone (~ 0.62°). Here the
waveguide spacing is D = 9.3 um, and the ratio between
the peak intensity of the interference and the peak in-
tensity of the signal beam is 10:1. In this regime of
anomalous diffraction, we reverse the applied bias to
create a self-defocusing nonlinearity. As predicted in

FIG. 4. Signal beam output intensity as a function of increas-
ing defocusing nonlinearity (negative voltage), for a beam
launched at 0.57° (close to the edge of the Brillouin zone) in
an array of 9.3 um channel spacing. (A),(B) show discrete dif-
fraction, (C),(D) show intermediate collapse, and (E),(F) de-
pict a staggered discrete soliton.
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-1000V

FIG. 5. On-axis and staggered solitons through a 7.8 um
waveguide array. Crystal output and intensity profile for
on-axis soliton at +800 V (A),(B) and staggered soliton at
—1000 V (E),(F). Interferograms for the respective cases,
showing in-phase behavior for the on-axis input (C),(D)

and out-of-phase behavior at the edge of the first Brillouin
zone (G),(H).

+800V

N -8

[13], a staggered (7 out-of-phase) bright soliton is ob-
served [Figs. 4(e) and 4(f)]. This is the first observation of
bright staggered solitons in any physical system. Unlike
the case of in-phase discrete solitons, the intensity peaks
of staggered states are located on the intensity minima of
the writing beam V.

Figure 5 shows relative phase information for on-axis
and staggered bright solitons for a grating spacing of
7.8 um. Figures 5(a) and 5(b) show a discrete soliton
created on-axis (in-phase), as in Fig. 3, while Figs. 5(c)
and 5(d) depict the corresponding interferogram (created
via interference with a copropagating plane wave) show-
ing that all the lobes are in phase with each other. On the
other hand, Figs. 5(e) and 5(f) show a staggered discrete
soliton produced at the edge of the Brillouin zone,
while its corresponding interferogram [Figs. 5(g) and
5(h)] shows that the central lobe is out of phase with its
neighbors (destructive interference in the center and con-
structive interference at the outer lobes). The two inter-
ferograms confirm again that the two self-localized states
observed in our experiments are indeed of the in-phase
and staggered type.

In conclusion, we have reported the first experimental
observation of discrete solitons in a 1D array of optically
induced waveguides. We have demonstrated two types of
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bright discrete solitons: in-phase self-localized states and
the staggered (7 out-of-phase) soliton family — with the
latter never having been observed before. Our work paves
the way for the first experimental observation of 2D
discrete solitons and opens up the possibility of inducing,
in real-time, photonic lattices of various kinds where the
diffraction properties can be controlled and the nonline-
arity can be tuned in real time. These ideas can be
readily extended to other nonlinear wave systems and
specifically to the formation of discrete solitons in 2D
optically induced periodic potentials in Bose-Einstein
condensates. More specifically, the exciting feature of
reversing both diffraction and nonlinearity, which is
offered by the photorefractive nonlinearity (by reversing
the applied field), can also be accomplished in Bose-
Einstein condensates, where the nonlinearity can be con-
trolled and reversed with a magnetic field [16] and the
periodic potential can be induced by light [17].
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Foundation, the NSE and the U.S. Army Research Office.
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